Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes
-
摘要: 针对双层结构在水中受到水下爆炸冲击这一问题,利用欧拉有限元数值模型对近场水下爆炸气泡与双层破口结构的相互作用机理进行了研究,分析了舱室涌流及流场演化等规律。首先,通过放电实验对数值模型进行了验证,结果表明,数值结果和实验结果吻合较好;然后,总结了不同破口尺寸、不同起爆位置和不同壳间水位条件下的耦合作用规律。在内部空气、流体惯性以及破口的联合作用下,气泡演化过程中会出现气泡分割现象。当内层破口尺寸系数小于0.5时,内舱室内会出现二次涌流现象,且涌流形态较细长;炸药起爆位置系数小于0.1时,自由液面处会出现破碎和重闭合现象;壳内水位对舱室涌流量的影响作用较为复杂,当水位满舱时,急速涌流会减少船艇的应急时间。Abstract: To address the problem of double-structures subjected to underwater explosion, the interaction mechanism between explosion bubbles and double-layer structures with circular hole was studied. And the characteristics such as cabin inrush and flow field change were analyzed by an Eulerian finite element numerical model. First of all, the numerical model was verified through discharge experiments, and it turned out that the numerical results agreed well with the experimental results. Then, the interaction behaviors under different initial conditions were summarized. Under the combined action of internal air, fluid inertia and breach induction, the bubble’s segmentation occurs during the bubble evolution process. When the size coefficient of the inner-layer breach is less than 0.5, the secondary water hump phenomenon occurs in the inner-cabin and the shape of the inrush is slender. When the explosive detonation position coefficient is less than 0.1, the re-closing and breaking of the free surface will take place. The influence of the free surface in the shell on the cabin inrush is complicated and when the water level is full, the rapid surge will reduce the emergency time of the ship.
-
-
[1] 张阿漫, 王诗平, 彭玉祥, 等. 水下爆炸与舰船毁伤研究进展 [J]. 中国舰船研究, 2019, 14(3): 1–13. DOI: 10.19693/j.issn.1673-3185.01608.ZHANG A M, WANG S P, PENG Y X, et al. Research progress in underwater explosion and its damage to ship structures [J]. Chinese Journal of Ship Research, 2019, 14(3): 1–13. DOI: 10.19693/j.issn.1673-3185.01608. [2] 金键, 朱锡, 侯海量, 等. 水下爆炸载荷下舰船响应与毁伤研究综述 [J]. 水下无人系统学报, 2017, 25(6): 396–409. DOI: 10.11993/j.issn.2096-3920.2017.05.002.JIN J, ZHU X, HOU H L, et al. Review of dynamic response and damage mechanism of ship structure subjected to underwater explosion load [J]. Journal of Unmanned Undersea Systems, 2017, 25(6): 396–409. DOI: 10.11993/j.issn.2096-3920.2017.05.002. [3] KLASEBOER E, KHOO B C, HUNG K C. Dynamics of an oscillating bubble near a floating structure [J]. Journal of Fluids and Structures, 2005, 21(4): 395–412. DOI: 10.1016/j.jfluidstructs.2005.08.006. [4] WANG S P, ZHANG A M, LIU Y L et al. Bubble dynamics and its applications [J]. Journal of Hydrodynamics, 2018, 30(6): 975–91. DOI: 10.1007/s42241-018-0141-3. [5] 张洪, 吴红波, 夏曼曼, 等. 水下爆炸边界效应的研究进展 [J]. 煤矿爆破, 2018(5): 1–5.ZHANG H, WU H B, XIA M M, et al. Research progress of the boundary effect on underwater blasting [J]. Coal Mine Blasting, 2018(5): 1–5. [6] 张弩, 宗智. 水下爆炸气泡载荷作用下船体梁的动态水弹性响应 [J]. 船舶力学, 2015, 19(5): 582–591. DOI: 10.3969/j.issn.1007-7294.2015.05.013.ZHANG N, ZONG Z. Dynamic hydro-elastic response of a ship hull girder subjected to underwater explosion bubbles [J]. Journal of Ship Mechanics, 2015, 19(5): 582–591. DOI: 10.3969/j.issn.1007-7294.2015.05.013. [7] GAO J G, CHEN Z H, HUANG Z G et al. Numerical investigations on the oblique water entry of high-speed projectiles [J]. Applied Mathematics and Computation, 2019, 362: 124547. DOI: 10.1016/j.amc.2019.06.061. [8] 张振华, 牟金磊, 陈崧, 等. 大型水面舰艇在重型鱼雷水下近距爆炸作用下的毁伤效应 [J]. 海军工程大学学报, 2013, 25(1): 48–53. DOI: 10.7495/j.issn.1009-3486.2013.01.006.ZHANG Z H, MU J L, CHEN S, et al. Anomalous dynamic response of ship beam to near-field underwater explosion of heavy torpedo [J]. Journal of Naval University of Engineering, 2013, 25(1): 48–53. DOI: 10.7495/j.issn.1009-3486.2013.01.006. [9] 殷彩玉, 金泽宇, 谌勇, 等. 多孔覆盖层水下爆炸流固耦合分析 [J]. 振动与冲击, 2017, 36(12): 7–11; 49. DOI: 10.13465/j.cnki.jvs.2017.12.002.YIN C Y, JIN Z Y, CHEN Y, et al. Fluid-structure interaction effects of cellular claddings to underwater explosion [J]. Journal of Vibration and Shock, 2017, 36(12): 7–11; 49. DOI: 10.13465/j.cnki.jvs.2017.12.002. [10] 张伦平, 潘建强, 刘建湖, 等. 多层结构水下爆炸破坏效应研究 [C] // 第十届全国冲击动力学讨论会论文集. 太原: 中国力学学会, 2011: 1−13. [11] ZHANG A M, CUI P, CUI J, et al. Experimental study on bubble dynamics subject to buoyancy [J]. Journal of Fluid Mechanics, 2015, 776: 137–60. DOI: 10.1017/jfm.2015.323. [12] LIU Y L, WANG S P, ZHANG A M. Interaction between bubble and air-backed plate with circular hole [J]. Physics of Fluids, 2016, 28(6): 062105. DOI: 10.1063/1.4953010. [13] LIU N N, WU W B, ZhANG A M et al. Experimental and numerical investigation on bubble dynamics near a free surface and a circular opening of plate [J]. Physics of Fluids, 2017, 29(10): 107102. DOI: 10.1063/1.4999406. [14] 刘润泉, 白雪飞, 朱锡. 舰船单元结构模型水下接触爆炸破口试验研究 [J]. 海军工程大学学报, 2001, 13(5): 41–46. DOI: 10.3969/j.issn.1009-3486.2001.05.011.LIU R Q, BAI X F, ZHU X, et al. Breach experiment research of vessel element structure models subjected to underwater contact explosion [J]. Journal of Naval University of Engineering, 2001, 13(5): 41–46. DOI: 10.3969/j.issn.1009-3486.2001.05.011. [15] 李金河, 汪斌, 王彦平, 等. 不同装药形状TNT水中爆炸近场冲击波传播的实验研究 [J]. 火炸药学报, 2018, 41(5): 461–464; 500. DOI: 10.14077/j.issn.1007-7812.2018.05.007.LI J H, WANG B, WANG Y P, et al. Experimental study on near-field shock wave propagation of underwater explosion of TNT with different charge shapes [J]. Chinese Journal of Explosives & Propellants, 2018, 41(5): 461–464; 500. DOI: 10.14077/j.issn.1007-7812.2018.05.007. [16] 杨棣, 姚熊亮, 王军, 等. 接触爆炸载荷作用下船体板架破口大小的预测 [J]. 中国造船, 2014, 55(2): 77–84. DOI: 10.3969/j.issn.1000-4882.2014.02.009.YANG D, YAO X L, WANG J, et al. Forecast of crevasse size of hull grillage in contact explosion [J]. Shipbuilding of China, 2014, 55(2): 77–84. DOI: 10.3969/j.issn.1000-4882.2014.02.009. [17] LI S, Li Y B, ZHANG A M. Numerical analysis of the bubble jet impact on a rigid wall [J]. Applied Ocean Research, 2015, 50: 227–236. DOI: 10.1016/j.apor.2015.02.003. [18] 汪浩, 程远胜, 刘均, 等. 新型矩形蜂窝夹芯夹层加筋圆柱壳抗水下爆炸冲击载荷分析 [J]. 振动与冲击, 2011, 30(1): 162–166; 226. DOI: 10.3969/j.issn.1000-3835.2011.01.036.WANG H, CHENG Y S, LIU J, et al. Anti-shock analysis for new type rectangular honeycomb sandwich stiffened cylindrical shells subjected to underwater explosion shock load [J]. Journal of Vibration and Shock, 2011, 30(1): 162–166; 226. DOI: 10.3969/j.issn.1000-3835.2011.01.036. [19] ZHANG A M, LIU Y L. Improved three-dimensional bubble dynamics model based on boundary element method [J]. Journal of Computational Physics, 2015, 294: 208–223. DOI: 10.1016/j.jcp.2015.03.049. [20] LI T, WANG S P, LI S, et al. Numerical investigation of an underwater explosion bubble based on FVM and VOF [J]. Applied Ocean Research, 2018, 74: 49–58. DOI: 10.1016/j.apor.2018.02.024. [21] 王志凯, 周鹏, 孙波, 等. 气泡及其破碎兴波对浮动冲击平台影响探究 [J]. 爆炸与冲击, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.WANG Z K, ZHOU P, SUN B, et al. Influence of bubbles and breaking waves on floating shock platform [J]. Explosion and Shock Waves, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212. [22] BENSON D J. Computational methods in lagrangian and eulerian hydrocodes [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2−3): 235–394. DOI: 10.1016/0045-7825(92)90042-I. [23] LIU Y L, ZHANG A M, TIAN Z L, et al. Investigation of free-field underwater explosion with Eulerian finite element method [J]. Ocean Engineering, 2018, 166: 182–190. DOI: 10.1016/j.oceaneng.2018.08.001. [24] HE M, ZHANG A M, LIU Y L. Prolonged simulation of near-free surface underwater explosion based on Eulerian finite element method [J]. Theoretical and Applied Mechanics Letters, 2020, 10(1): 16–22. DOI: 10.1016/j.taml.2020.01.003. [25] TIAN Z L, LIU Y L, ZHANG A M, et al. Energy dissipation of pulsating bubbles in compressible fluids using the Eulerian finite-element method [J]. Ocean Engineering, 2020, 196: 106714. DOI: 10.1016/j.oceaneng.2019.106714. [26] QIU J X, LIU T G, KHOO B C. Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with ghost fluid method [J]. Communications in Computational Physics, 2008, 3(2): 479–504. [27] FELIPPA C A. A family of early-time approximations for fluid-structure interaction [J]. Journal of Applied Mechanics, 1980, 47(4): 703–708. DOI: 10.1115/1.3153777. -
推荐阅读
含初始损伤饱水花岗岩的冲击破坏规律
褚怀保 等, 爆炸与冲击, 2025
考虑裂隙粗糙度的岩体单轴压缩动态损伤模型
刘红岩 等, 爆炸与冲击, 2025
反射爆炸应力波作用下动静裂纹的贯通机理
周星源 等, 爆炸与冲击, 2025
基于自由场爆炸的猪鼓膜破裂规律实验研究
向书毅 等, 爆炸与冲击, 2024
三轴压缩下裂隙岩体破坏模式及能量演化研究
徐阳 等, 高压物理学报, 2024
三轴应力下孔隙水泥环的压裂破坏机制
杨永明 等, 高压物理学报, 2022
基于dic方法研究混凝土劈裂的变形和破坏
任会兰 等, 高压物理学报, 2022
Antimicrobial activity of lipids extracted from hermetia illucens reared on different substrates
Franco, Antonio et al., APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2024
Dynamic evolution mechanism of the fracturing fracture systemdenlightenments from hydraulic fractu ring physical experiments and finite element numerical simulation
PETROLEUM SCIENCE, 2024
Study on internal rise law of fracture water pressure and progressive fracture mechanism of rock mass under blasting mpact
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY