喷砂冲蚀实验中颗粒轨迹的数值预测

张晴波 郭涛 洪国军 曹蕾

张晴波, 郭涛, 洪国军, 曹蕾. 喷砂冲蚀实验中颗粒轨迹的数值预测[J]. 爆炸与冲击, 2021, 41(2): 024201. doi: 10.11883/bzycj-2020-0118
引用本文: 张晴波, 郭涛, 洪国军, 曹蕾. 喷砂冲蚀实验中颗粒轨迹的数值预测[J]. 爆炸与冲击, 2021, 41(2): 024201. doi: 10.11883/bzycj-2020-0118
ZHANG Qingbo, GUO Tao, HONG Guojun, CAO Lei. Numerical prediction of particle trajectories in an erosion experiment[J]. Explosion And Shock Waves, 2021, 41(2): 024201. doi: 10.11883/bzycj-2020-0118
Citation: ZHANG Qingbo, GUO Tao, HONG Guojun, CAO Lei. Numerical prediction of particle trajectories in an erosion experiment[J]. Explosion And Shock Waves, 2021, 41(2): 024201. doi: 10.11883/bzycj-2020-0118

喷砂冲蚀实验中颗粒轨迹的数值预测

doi: 10.11883/bzycj-2020-0118
基金项目: 交通运输部2018年度交通运输行业重点科技项目(2018-MS1-026)
详细信息
    作者简介:

    张晴波(1972- ),男,硕士,正高级工程师,zhangqingbo@cccc-drc.com

    通讯作者:

    郭 涛(1984- ),男,博士,高级工程师,guotao@cccc-drc.com

  • 中图分类号: O359; TP391.9

Numerical prediction of particle trajectories in an erosion experiment

  • 摘要: 针对冲击磨损实验研究中磨粒群体的运动轨迹难以准确表征的问题,在负压喷射砂粒群冲击Q235钢板的实验中宏观测量了砂粒撞击的速度与位置分布,并使用数值方法模拟了实验砂粒与空气在喷嘴内外的双向耦合过程,以实现负压喷射砂粒群的轨迹预测。计算中提出了非球形粒子在相对马赫数接近1时的曳力模型,以反映空气可压缩引起砂粒表面流动分离的现象,并合理选择Magnus升力模型及壁面反射模型,最终数值预测的砂粒碰撞速度以及撞击位置与实验情况吻合良好。
  • 图  1  气驱砂冲蚀磨损实验装置示意图

    Figure  1.  Diagram of the air-blasting-sand erosion experimental setup

    图  2  喷砂测速装置示意图

    Figure  2.  Speed test device for blasting sand

    图  3  喷枪内部结构示意图

    Figure  3.  Structure diagram of the sand-blasting gun

    图  4  不同曳力模型得到的平均喷砂速度与实验值比较

    Figure  4.  Comparison of blasting sand speeds between numerical and experimental results

    图  5  实验冲蚀痕迹与光滑壁面且忽略升力的数值结果对比

    Figure  5.  Comparison between experimental and numerical results (smooth wall & no lift force).

    图  6  粗糙壁面模型对冲蚀数值结果的影响

    Figure  6.  The rough wall model effects on numerical erosion results

    图  7  非球形高Ma曳力,粗糙壁面与升力的联合模型下的气相速率度与部分颗粒轨迹数值解

    Figure  7.  The numerical results of air velocity magnitude and some particle trajectories by the combined model

    图  8  联合模型求解的砂粒对试块的冲蚀率

    Figure  8.  The numerical result of the erosion rate by the combined model

  • [1] CHEN J, WANG Y, LI X, et al. Reprint of “Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD-DEM coupling method” [J]. Powder Technology, 2015, 282(9): 25–31. DOI: 10.1016/j.powtec.2015.05.037.
    [2] GIANANDREA V M, GIACOMO F, STEFANO M. A mixed Euler-Euler/Euler-Lagrange approach to erosion prediction [J]. Wear, 2015, 342–343(11): 138–153. DOI: 10.1016/j.wear.2015.08.015.
    [3] KARIMI S, SIAMACK A S, MCLAURY B S. Predicting fine particle erosion utilizing computational fluid dynamics [J]. Wear, 2017, 376–377(4): 1130–1137. DOI: 10.1016/j.wear.2016.11.022.
    [4] GNANAVELU A, KAPUR N, NEVILLE A, et al. An integrated methodology for predicting material wear rates due to erosion [J]. Wear, 2009, 267(11): 1935–1944. DOI: 10.1016/j.wear.2009.05.001.
    [5] OKITA R, ZHANG Y, MCLAURY B S, et al. Experimental and computational investigations to evaluate the effects of fluid viscosity and particle size on erosion damage [J]. Journal of Fluid Engineering, 2012, 134(6): 061301. DOI: 10.1115/1.4005683.
    [6] KAUNDAL R. Role of process variables on solid particle erosion of polymer composites: a critical review [J]. Silicon, 2017, 9(2): 223–238. DOI: 10.1007/s12633-014-9191-5.
    [7] OKA Y I, YOSHIDA T. Practical estimation of erosion damage caused by solid particle impact: Part 2: mechanical properties of materials directly associated with erosion damage [J]. Wear, 2005, 259(1–6): 95–101. DOI: 10.1016/j.wear.2005.01.040.
    [8] CLIFT R, GRACE J R, WEBER M E. Bubbles, drops and particles[M]. New York: Academic Press, 1978: 275−278.
    [9] LOTH E. Compressibility and rarefaction effects on drag of a spherical particle [J]. AIAA Journal, 2008, 46(9): 2219–2228. DOI: 10.2514/1.28943.
    [10] HAIDER A, LEVENSPIEL O. Drag coefficient and terminal velocity of spherical and nonspherical particles [J]. Powder Technology, 1989, 58(1): 63–70. DOI: 10.1016/0032-5910(89)80008-7.
    [11] SOLNORDAL C B, WONG C Y, BOULANGER J. An experimental and numerical analysis of erosion caused by sand pneumatically conveyed through a standard pipe elbow [J]. Wear, 2015, 336–337(8): 43–57. DOI: 10.1016/j.wear.2015.04.017.
    [12] SOMMERFELD M, HUBER N. Experimental analysis and modelling of particle-wall collisions [J]. International Journal of Multiphase Flow, 1999, 25(6–7): 1457–1489. DOI: 10.1016/S0301-9322(99)00047-6.
    [13] OESTERLÉ B, BUI DINH T. Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers [J]. Experiments in Fluids, 1998, 25(1): 16–22. DOI: 10.1007/s003480050203.
  • 加载中
图(8)
计量
  • 文章访问数:  631
  • HTML全文浏览量:  245
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-22
  • 修回日期:  2020-08-20
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回