低速冲击下混凝土少筋梁断裂性能

宋敏 张杰 陈青青 王志勇 王志华

宋敏, 张杰, 陈青青, 王志勇, 王志华. 低速冲击下混凝土少筋梁断裂性能[J]. 爆炸与冲击, 2021, 41(6): 063102. doi: 10.11883/bzycj-2020-0121
引用本文: 宋敏, 张杰, 陈青青, 王志勇, 王志华. 低速冲击下混凝土少筋梁断裂性能[J]. 爆炸与冲击, 2021, 41(6): 063102. doi: 10.11883/bzycj-2020-0121
SONG Min, ZHANG Jie, CHEN Qingqing, WANG Zhiyong, WANG Zhihua. Fracture behaviors of lightly reinforced concrete beams under different loading rates[J]. Explosion And Shock Waves, 2021, 41(6): 063102. doi: 10.11883/bzycj-2020-0121
Citation: SONG Min, ZHANG Jie, CHEN Qingqing, WANG Zhiyong, WANG Zhihua. Fracture behaviors of lightly reinforced concrete beams under different loading rates[J]. Explosion And Shock Waves, 2021, 41(6): 063102. doi: 10.11883/bzycj-2020-0121

低速冲击下混凝土少筋梁断裂性能

doi: 10.11883/bzycj-2020-0121
基金项目: 国家自然科学基金(11702186;11390362);青海省科技计划项目(2017-ZJ-783)
详细信息
    作者简介:

    宋 敏(1991- ),男,博士研究生,songmin595@163.com

    通讯作者:

    王志华(1977- ),男,博士,教授,wangzh077@163.com

  • 中图分类号: O383

Fracture behaviors of lightly reinforced concrete beams under different loading rates

  • 摘要: 动态加载下,混凝土中钢筋的阻裂性能一直是冲击动力学研究领域的难点之一。利用落锤试验机对含缺口的混凝土少筋梁进行三点弯曲试验,分析了不同加载速率下梁的冲击力、跨中挠度、混凝土起裂应变率和钢筋应变。实验结果表明:在一定加载速率范围内(0.885~1.252 m/s),混凝土预制裂缝尖端的裂纹起裂应变率、冲击力最大值、跨中挠度峰值与加载速率呈线性增长关系,当加载速率增至1.771 m/s时,增长趋势减弱;冲击力卸载时,钢筋部分弹性变形恢复导致裂纹产生闭合,裂纹嘴张开位移逐渐减小至恒定值,对裂纹嘴张开位移峰值前的部分曲线进行拟合后得到裂纹嘴张开位移率,结果表明裂纹嘴张开位移率随加载速率的提高而线性增大。
  • 图  1  试件设计

    Figure  1.  Specimen design

    图  2  落锤加载装置

    Figure  2.  Drop hammer equipment

    图  3  梁跨中截面应力

    Figure  3.  The section stress at mid-span of beam

    图  4  混凝土切口根部应变时程曲线

    Figure  4.  Typical strain-time curves of concrete at the notch root

    图  5  加载速率和裂纹起裂应变率的关系

    Figure  5.  Relationship between crack initiation strain rate and loading rates

    图  6  不同加载速率下的裂纹扩展

    Figure  6.  Crack propagation of concrete beams under different loading rates

    图  7  不同加载速率下冲击力时程曲线

    Figure  7.  Impact force versus loading rates

    图  8  不同加载速率下跨中挠度时程曲线

    Figure  8.  Mid-span deflection versus loading rates

    图  9  冲击力峰值、跨中挠度最大值与加载速率的关系

    Figure  9.  Peak load and maximum of mid-span deflection versus loading rates

    图  10  不同加载速率下冲击力、跨中挠度和钢筋应变时程曲线

    Figure  10.  Impact force, mid-span deflection and steel strain versus time under different loading rates

    图  11  水平位移场

    Figure  11.  Horizontal displacement field in DIC

    图  12  不同加载速率下裂纹嘴张开位移及其变化率

    Figure  12.  Crack mouth opening displacement and its changing rate at different loading rates

    图  13  不同加载速率下裂纹扩展

    Figure  13.  Final cracks under different loading rates

    表  1  裂纹起裂应变率试验结果

    Table  1.   Crack initiation strain rate versus loading rates

    v/(m·s−1${\dot \varepsilon _{{\rm{ini}}}}$/s−1${\dot \varepsilon _{{\rm{ini}}}}$平均值/s−1$\Delta {\dot \varepsilon _{{\rm{ini}}}}/\Delta v$
    0.8850.2330.255
    0.276
    1.0840.6320.6552.010
    0.678
    1.2520.9570.9621.827
    1.023
    0.906
    1.7711.3531.3540.755
    1.403
    1.307
    下载: 导出CSV

    表  2  实验结果

    Table  2.   Experimental results

    加载速率/(m·s−1)冲击力跨中挠度钢筋应变
    峰值/kN峰值时刻/ms峰值/mm峰值时刻/ms峰值/10−6峰值时刻/ms
    0.885 59.390.331.2523.0 92.490.33
    1.084 85.480.291.85 3.41489.270.54
    1.252130.160.142.53 4.03773.430.69
    1.771154.680.123.29 4.44473.320.71
    下载: 导出CSV
  • [1] AZAD A K, MIRZA M S, CHAN P. Fracture energy of weakly reinforced concrete beams [J]. Fatigue & Fracture of Engineering Materials & Structures, 1989, 12(1): 9–18. DOI: 10.1111/j.1460-2695.1989.tb00504.x.
    [2] FAYYAD T M, LEES J M. Experimental investigation of crack propagation and crack branching in lightly reinforced concrete beams using digital image correlation [J]. Engineering Fracture Mechanics, 2017, 182: 487–505. DOI: 10.1016/j.engfracmech.2017.04.051.
    [3] 付应乾, 董新龙. 落锤冲击下钢筋混凝土梁响应及破坏的实验研究 [J]. 中国科学: 技术科学, 2016, 46(4): 400–406. DOI: 10.1360/N092015-00337.

    FU Y Q, DONG X L. An experimental study on impact response and failure behavior of reinforced concrete beam [J]. Scientia Sinica Technologica, 2016, 46(4): 400–406. DOI: 10.1360/N092015-00337.
    [4] MINDESS S, BENTUR A. A preliminary study of the fracture of concrete beams under impact loading, using high speed photography [J]. Cement and Concrete Research, 1985, 15(3): 474–484. DOI: 10.1016/0008-8846(85)90121-8.
    [5] BENTUR A. The fracture of reinforced concrete under impact loading [C]// Materials Research Society Symposium Procedure. Cambridge University Press, 1986. DOI: 10.1557/PROC-64-225.
    [6] BOSCO C, CARPINTERI A. Fracture behavior of beam cracked across reinforcement [J]. Theoretical and Applied Fracture Mechanics, 1992, 17(1): 61–68. DOI: 10.1016/0167-8442(92)90046-z.
    [7] RUIZ G, CARMONA J R, CENDÓN D A. Propagation of a cohesive crack through adherent reinforcement layers [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(52): 7237–7248. DOI: 10.1016/j.cma.2005.01.029.
    [8] SUKONTASUKKUL P, NIMITYONGSKUL P, MINDESS S. Effect of loading rate on damage of concrete [J]. Cement and Concrete Research, 2004, 34(11): 2127–2134. DOI: 10.1016/j.cemconres.2004.03.022.
    [9] FAN X Q, HU S W, LU J. Influence of steel rebar position on concrete Double-K fracture toughness [J]. Journal of Testing and Evaluation, 2016, 44(6): 2361–2367. DOI: 10.1520/JTE20150101.
    [10] FAN X Q, HU S W. Influence of crack initiation length on fracture behaviors of reinforced concrete [J]. Applied Clay Science, 2013, 79: 25–29. DOI: 10.1016/j.clay.2013.02.026.
    [11] 徐晓良, 杨树桐. 钢筋混凝土少筋梁断裂特性试验研究 [J]. 工程力学, 2017, 34(S1): 239–243. DOI: 10.6052/j.issn.1000-4750.2016.03.S049.

    XU X L, YANG S T. Experimental study on fracture behavior of lightly-reinforced concrete beam [J]. Engineering Mechanics, 2017, 34(S1): 239–243. DOI: 10.6052/j.issn.1000-4750.2016.03.S049.
    [12] ZHANG X X, RUIZ G, YU R C. Experimental study of combined size and strain rate effects on the fracture of reinforced concrete [J]. Journal of Materials in Civil Engineering, 2008, 20(8): 544–551. DOI: 10.1061/(asce)0899-1561(2008)20:8(544).
    [13] KISHI N, MIKAMI H, MATSUOKA K G, et al. Impact behavior of shear-failure-type RC beams without shear rebar [J]. International Journal of Impact Engineering, 2002, 27(9): 955–968. DOI: 10.1016/s0734-743x(01)00149-x.
    [14] 滕智明. 钢筋混凝土基本构件[M]. 2版. 北京: 清华大学出版社, 1987.
    [15] 何连立. 钢筋混凝土断裂参数的试验研究[D]. 大连: 大连理工大学, 2005: 41−44. DOI: 10.7666/d.y759550.
    [16] 陈永春. 部分预应力混凝土梁开裂后截面应力的简捷计算 [J]. 建筑结构学报, 1985(2): 11–17. DOI: 10.14006/j.jzjgxb.1985.02.002.

    CHEN Y C. Simplified calculation of flexural stresses in partially prestressed concrete beams after cracking [J]. Journal of Building Structures, 1985(2): 11–17. DOI: 10.14006/j.jzjgxb.1985.02.002.
    [17] ROSA A L, YU R C, RUIZ G, et al. A loading rate dependent cohesive model for concrete fracture [J]. Engineering Fracture Mechanics, 2012, 82: 195–208. DOI: 10.1016/j.engfracmech.2011.12.013.
    [18] SHAH S P. Concrete and fiber reinforced concrete subjected to impact loading [J]. MRS Online Proceedings Library, 1985, 64: 181–201. DOI: 10.1557/PROC-64-181.
    [19] SAATCI S, VECCHIO F J. Effects of shear mechanisms on impact behavior of reinforced concrete beams [J]. ACI Structural Journal, 2009, 106(1): 78–86.
    [20] DESTREBECQ J F, TOUSSAINT E, FERRIER E. Analysis of cracks and deformations in a full scale reinforced concrete beam using a Digital Image Correlation technique [J]. Experimental Mechanics, 2011, 51(6): 879–890. DOI: 10.1007/s11340-010-9384-9.
    [21] FAYYAD T M, LEES J M. Application of digital image correlation to reinforced concrete fracture [J]. Procedia Materials Science, 2014, 3: 1585–1590. DOI: 10.1016/j.mspro.2014.06.256.
    [22] SWAMY R N. RILEM-CEB-IABSE-IASS interassociation symposium on concrete structures under impact and impulsive loading [J]. International Journal of Cement Composites and Lightweight Concrete, 1982, 4(4): 254. DOI: 10.1016/0262-5075(82)90032-X.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  257
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-24
  • 修回日期:  2020-10-29
  • 网络出版日期:  2021-06-01
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回