动载荷作用下裂隙岩体的止裂机理分析

周磊 姜亚成 朱哲明 董玉清 牛草原 王蒙

周磊, 姜亚成, 朱哲明, 董玉清, 牛草原, 王蒙. 动载荷作用下裂隙岩体的止裂机理分析[J]. 爆炸与冲击, 2021, 41(5): 053102. doi: 10.11883/bzycj-2020-0125
引用本文: 周磊, 姜亚成, 朱哲明, 董玉清, 牛草原, 王蒙. 动载荷作用下裂隙岩体的止裂机理分析[J]. 爆炸与冲击, 2021, 41(5): 053102. doi: 10.11883/bzycj-2020-0125
ZHOU Lei, JIANG Yacheng, ZHU Zheming, DONG Yuqing, NIU Caoyuan, WANG Meng. Mechanism study of preventing crack propagation of fractured rockunder dynamic loads[J]. Explosion And Shock Waves, 2021, 41(5): 053102. doi: 10.11883/bzycj-2020-0125
Citation: ZHOU Lei, JIANG Yacheng, ZHU Zheming, DONG Yuqing, NIU Caoyuan, WANG Meng. Mechanism study of preventing crack propagation of fractured rockunder dynamic loads[J]. Explosion And Shock Waves, 2021, 41(5): 053102. doi: 10.11883/bzycj-2020-0125

动载荷作用下裂隙岩体的止裂机理分析

doi: 10.11883/bzycj-2020-0125
基金项目: 国家自然科学基金(U19A2098);四川省科技计划项目(2021YJ0511);深地科学与工程教育部重点实验室(四川大学)开放基金(DESE202005);工程材料与结构冲击振动四川省重点实验室开放基金(18yfjk02)
详细信息
    作者简介:

    周 磊(1990- ),男,博士,助理研究员,zhouleittkx@126.com

    通讯作者:

    朱哲明(1965- ),男,博士,教授,博士生导师,zhemingzhu@hotmail.com

  • 中图分类号: O346.1

Mechanism study of preventing crack propagation of fractured rockunder dynamic loads

  • 摘要: 为深层次了解裂隙岩体在动载荷作用下的动态断裂特性及止裂机理,采用TWSRC(tunnel with single radial crack)构型进行中低速冲击实验,选择砂岩作为原材料制作裂隙岩体试样,以落锤冲击试验装置与裂纹扩展计实验系统对裂纹的动态起裂、扩展及止裂过程进行全过程监测,重点研究动态破裂过程的破裂行为及止裂现象。使用有限差分法程序进行数值模拟,验证冲击实验结果的科学性与准确性。研究发现:裂隙岩体的动态断裂过程是由起裂加速-高速扩展-缓慢减速-止裂-再次起裂加速-再次高速扩展等多次循环的过程构成,且止裂区间尺寸为微秒量级;裂隙岩体止裂位置的穿晶断裂比例远小于初始起裂点,青砂岩动态断裂过程的穿晶断裂比例稍大于黑砂岩;裂隙岩体中止裂点再次起裂所需的能量,远小于预制裂纹初始起裂所需要的能量。
  • 图  1  TWSRC构型

    Figure  1.  TWSRC sample

    图  2  砂岩材料的XRD成分分析

    Figure  2.  XRD analyses of sandstone materials

    图  3  落锤冲击试验装置

    Figure  3.  Drop hammer impact device

    图  4  冲击脉冲信号

    Figure  4.  Impulse signals

    图  5  实验结果

    Figure  5.  Experimental results

    图  6  青砂岩的快速扩展

    Figure  6.  Rapidly propagation of green sandstone

    图  7  电镜扫描图像

    Figure  7.  Scanning electron micrograph

    图  8  数值模型网格

    Figure  8.  Mesh of numerical model

    图  9  最大主应力

    Figure  9.  Maximum principal stresses

    图  10  数值模拟结果

    Figure  10.  Numerical simulation results

    图  11  止裂点和再次起裂点的应力变化

    Figure  11.  Stress variations at crack arrest point and crack again point

    图  12  起裂点、止裂点和再次起裂点的能量变化

    Figure  12.  Energy variations at crack point, crack arrest point and crack again point

    表  1  砂岩的力学性能

    Table  1.   Mechanical properties of sandstone materials

    材料ρ/(kg·m−3E/GPaμfd/MPacl/(m·s−1ct /(m·s−1
    青砂岩2 26513.580.16524.842 5631 607
    黑砂岩2 65033.670.20552.963 6782 239
    下载: 导出CSV

    表  2  实验结果

    Table  2.   Experimental results

    试件vs/(m·s−1ti/μsta/μsva/(m·s−1la/mm
    青砂岩18.43342.497.6368.615.4
    青砂岩28.40356.179.6363.724.2
    青砂岩38.38367.457.2302.715.4
    黑砂岩18.47370.854.2310.119.8
    黑砂岩28.41350.081.7372.915.4
    黑砂岩38.39387.085.9396.1 8.8
    下载: 导出CSV
  • [1] 曹富, 杨丽萍, 李炼, 等. 压缩单裂纹圆孔板(SCDC)岩石动态断裂全过程研究 [J]. 岩土力学, 2017, 38(6): 1573–1582, 1588. DOI: 10.16285/j.rsm.2017.06.005.

    CAO F, YANG L P, LI L, et al. Research on whole dynamical fracture process of rock using single cleavage drilled compression (SCDC) specimen [J]. Rock and Soil Mechanics, 2017, 38(6): 1573–1582, 1588. DOI: 10.16285/j.rsm.2017.06.005.
    [2] 张盛, 鲁义强, 王启智. 用P-CCNBD试样测定岩石动态扩展韧度和观察动态止裂现象 [J]. 岩土力学, 2017, 38(11): 3095–3105. DOI: 10.16285/j.rsm.2017.11.003.

    ZHANG S, LU Y Q, WANG Q Z. Measurement of dynamic fracture propagation toughness of rock and observation of dynamic arrest phenomenon using P-CCNBD specimens [J]. Rock and Soil Mechanics, 2017, 38(11): 3095–3105. DOI: 10.16285/j.rsm.2017.11.003.
    [3] 周辉, 徐荣超, 张传庆, 等. 预应力锚杆锚固止裂效应的试验研究 [J]. 岩石力学与工程学报, 2015, 34(10): 2027–2037. DOI: 10.13722/j.cnki.jrme.2015.0983.

    ZHOU H, XU R C, ZHANG C Q, et al. Experimental study of crack prevention effect of pre-stressed bolt anchoring [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2027–2037. DOI: 10.13722/j.cnki.jrme.2015.0983.
    [4] FENG P, DAI F, LIU Y, et al. Coupled effects of static-dynamic strain rates on the mechanical and fracturing behaviors of rock-like specimens containing two unparallel fissures [J]. Engineering Fracture Mechanics, 2019, 207: 237–253. DOI: 10.1016/j.engfracmech.2018.12.033.
    [5] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 423–439. DOI: 10.1016/j.ijrmms.2013.01.005.
    [6] 郭东明, 刘康, 胡久羡, 等. 爆生气体对邻近硐室背爆侧预制裂纹影响机理 [J]. 煤炭学报, 2016, 41(1): 265–270. DOI: 10.13225/j.cnki.jccs.2015.1249.

    GUO D M, LIU K, HU J X, et al. Experimental study on the effect mechanism of the explosion gas on the precrack in the back-blasting of adjacent tunnel [J]. Journal of China Coal Society, 2016, 41(1): 265–270. DOI: 10.13225/j.cnki.jccs.2015.1249.
    [7] XU Y, YAO W, ZHAO G L, et al. Evaluation of the short core in compression (SCC) method for measuring mode Ⅱ fracture toughness of rocks [J]. Engineering Fracture Mechanics, 2020, 224: 106747. DOI: 10.1016/j.engfracmech.2019.106747.
    [8] LI D Y, HAN Z Y, SUN X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1623–1643. DOI: 10.1007/s00603-018-1652-5.
    [9] 李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究 [J]. 岩石力学与工程学报, 2017, 36(12): 2872–2883. DOI: 10.13722/j.cnki.jrme.2017.0488.

    LI D Y, HAN Z Y, SUN X L, et al. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2872–2883. DOI: 10.13722/j.cnki.jrme.2017.0488.
    [10] HUANG Y H, YANG S Q, TIAN W L. Crack coalescence behavior of sandstone specimen containing two pre-existing flaws under different confining pressures [J]. Theoretical and Applied Fracture Mechanics, 2019, 99: 118–130. DOI: 10.1016/j.tafmec.2018.11.013.
    [11] WANG M, WANG F, ZHU Z M, et al. Modelling of crack propagation in rocks under SHPB impacts using a damage method [J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(8): 1699–1710. DOI: 10.1111/ffe.13012.
    [12] 杨仁树, 苏洪, 龚悦, 等. 爆炸荷载下不对称Y型裂纹扩展规律的试验研究 [J]. 岩土力学, 2017, 38(8): 2175–2181. DOI: 10.16285/j.rsm.2017.08.003.

    YANG R S, SU H, GONG Y, et al. Study on the regularity of asymmetric Y-shaped cracks propagation under blast loading [J]. Rock and Soil Mechanics, 2017, 38(8): 2175–2181. DOI: 10.16285/j.rsm.2017.08.003.
    [13] ZHOU L, ZHU Z M, LIU R F, et al. Investigation on fracture properties of single-flawed tunnel model under medium-to-low-speed impacts [J]. Acta Mechanica Solida Sinica, 2020, 33(2): 205–225. DOI: 10.1007/s10338-019-00124-4.
    [14] ZHOU Q, ZHU Z M, WANG X, et al. The effect of a pre‐existing crack on a running crack in brittle material under dynamic loads [J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(11): 2544–2557. DOI: 10.1111/ffe.13105.
    [15] 岳中文, 宋耀, 陈彪, 等. 冲击载荷下层状岩体动态断裂行为的模拟试验研究 [J]. 振动与冲击, 2017, 36(12): 223–229. DOI: 10.13465/j.cnki.jvs.2017.12.036.

    YUE Z W, SONG Y, CHEN B, et al. Study on behaviors of dynamic fracture in layered rock under impact loading [J]. Journal of Vibration and Shock, 2017, 36(12): 223–229. DOI: 10.13465/j.cnki.jvs.2017.12.036.
    [16] WANG Q Z, YANG J R, ZHANG C G, et al. Sequential determination of dynamic initiation and propagation toughness of rock using an experimental-numerical-analytical method [J]. Engineering Fracture Mechanics, 2015, 141: 78–94. DOI: 10.1016/j.engfracmech.2015.04.025.
    [17] GAO G, HUANG S, XIA K, et al. Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests [J]. Experimental Mechanics, 2015, 55(1): 95–104. DOI: 10.1007/s11340-014-9863-5.
    [18] 李地元, 成腾蛟, 周韬, 等. 冲击载荷作用下含孔洞大理岩动态力学破坏特性试验研究 [J]. 岩石力学与工程学报, 2015, 34(2): 249–260. DOI: 10.13722/j.cnki.jrme.2015.02.004.

    LI D Y, CHENG T J, ZHOU T, et al. Experimental study of the dynamic strength and fracturing characteristics of marble specimens with a single hole under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 249–260. DOI: 10.13722/j.cnki.jrme.2015.02.004.
    [19] 郭东明, 刘康, 杨仁树, 等. 动静荷载对邻近巷道裂纹缺陷扰动的模拟实验 [J]. 爆炸与冲击, 2016, 36(3): 297–304. DOI: 10.11883/1001-1455(2016)03-0297-08.

    GUO D M, LIU K, YANG R S, et al. Simulated experiment of disturbance effect on crack defects of adjacent tunnel under dynamic and static load [J]. Explosion and Shock Waves, 2016, 36(3): 297–304. DOI: 10.11883/1001-1455(2016)03-0297-08.
    [20] 王蒙, 朱哲明, 王雄. 冲击荷载作用下的Ⅰ/Ⅱ复合型裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.

    WANG M, ZHU Z M, WANG X. The growth of mixed-mode Ⅰ/Ⅱ crack under impacting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.
    [21] 邓帅, 朱哲明, 王磊, 等. 原岩应力对裂纹动态断裂行为的影响规律研究 [J]. 岩石力学与工程学报, 2019, 38(10): 1989–1999. DOI: 10.13722/j.cnki.jrme.2019.0347.

    DENG S, ZHU Z M, WANG L, et al. Study on the influence of in-situ stresses on dynamic fracture behaviors of cracks [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 1989–1999. DOI: 10.13722/j.cnki.jrme.2019.0347.
    [22] 万端莹, 朱哲明, 刘瑞峰, 等. 基于RPC试件的爆炸应力波作用下Ⅰ型裂纹扩展行为的研究 [J]. 岩石力学与工程学报, 2019, 38(12): 2478–2490. DOI: 10.13722/j.cnki.jrme.2019.0573.

    WAN D Y, ZHU Z M, LIU R F, et al. Study of propagation behaviors of mode Ⅰ cracks under blasting stress wave based on RPC specimens [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2478–2490. DOI: 10.13722/j.cnki.jrme.2019.0573.
    [23] ZHANG Q B, ZHAO J. Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms [J]. International Journal of Fracture, 2014, 189(1): 1–32. DOI: 10.1007/s10704-014-9959-z.
    [24] ZHOU L, ZHU Z M, DONG Y Q, et al. Study of the fracture behavior of mode I and mixed mode Ⅰ/Ⅱ cracks in tunnel under impact loads [J]. Tunnelling and Underground Space Technology, 2019, 84: 11–21. DOI: 10.1016/j.tust.2018.10.018.
    [25] 李夕兵. 岩石动力学基础与应用[M]. 北京: 科学出版社, 2014: 1-66.
    [26] JU M H, LI J C, YAO Q L, et al. Rate effect on crack propagation measurement results with crack propagation gauge, digital image correlation, and visual methods [J]. Engineering Fracture Mechanics, 2019, 219: 106537. DOI: 10.1016/j.engfracmech.2019.106537.
    [27] WU Q H, WENG L, ZHAO Y L, et al. On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates [J]. Engineering Geology, 2019, 253: 94–110. DOI: 10.1016/j.enggeo.2019.03.014.
    [28] 谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 1996: 168-261.
    [29] WONG L N Y, LI H Q. Numerical study on coalescence of two pre-existing coplanar flaws in rock [J]. International Journal of Solids and Structures, 2013, 50(22–23): 3685–3706. DOI: 10.1016/j.ijsolstr.2013.07.010.
    [30] HE C L, YANG J. Experimental and numerical investigations of dynamic failure process in rock under blast loading [J]. Tunnelling and Underground Space Technology, 2019, 83: 552–564. DOI: 10.1016/j.tust.2018.08.047.
    [31] JIANG H X, DU C L, LIU Z H. Theoretical and numerical investigation on rock fragmentation under high-pressure water-jet impact [J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2017, 41(3): 305–315. DOI: 10.1007/s40996-017-0065-0.
    [32] JIANG H X, DU C L, LIU S Y, et al. Numerical simulation of rock fragmentation under the impact load of water jet [J]. Shock and Vibration, 2014, 2014: 219489. DOI: 10.1155/2014/219489.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  247
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 修回日期:  2020-07-24
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-05-05

目录

    /

    返回文章
    返回