Optimization of vehicle protection components based on reliability
-
摘要: 在传统的优化流程中,不考虑设计变量的不确定性将引起设计目标的性能波动,甚至设计失败。为提高军用车辆底部防护能力,针对一种车辆防护组件进行了可靠性优化。在爆炸防护优化中引入多目标可靠性优化,通过实验设计和灵敏度分析筛选设计变量,再构建并选择准确度最高的代理模型,运用多目标遗传算法完成防护组件的可靠性优化。实验和数值模拟结果表明,优化后的防护组件满足防护性和轻量化的要求,且设计的可靠性得到了提升,可为后续防护组件设计生产提供参考。Abstract: In order to improve the bottom protection capability of military vehicles, a reliable optimization method was proposed for the design of vehicle protection components. In the traditional optimization process, if the uncertainty of design variables is not considered, the performance of design objectives will fluctuate or even fail. In this paper, multi-objective reliability optimization was introduced into the optimization of explosion protection. The surrogate model with the highest accuracy was constructed and chosen after the design variables were selected through experimental design and sensitivity analysis. The reliability optimization of the protection components was achieved by the multi-objective genetic algorithm. Eventually, through experiment and simulation verification, the optimized protective components met the requirements of protection and lightweight, and the reliability was improved, which can provide reference for the subsequent design and production of protective components.
-
表 1 设计目标和初始值
Table 1. Design goals and initial values
项目 M D 设计目标 函数 fM(x) fD(x) 初始值 430 kg 185.9 mm 目标值 最小 最小 表 2 设计变量的初始值和概率分布
Table 2. Initial values and probability distributions of design variables
设计变量 参数定义 概率分布 初始值 相关系数σ/μ 离散取值 x1 面板厚度 正态分布 9.00 mm 0.1 x2 背板厚度 正态分布 8.00 mm 0.1 x3 横梁厚度 正态分布 8.00 mm 0.1 x4 纵梁厚度 正态分布 8.00 mm 0.1 x5 蜂窝胞元厚度 正态分布 0.35 mm 0.1 x6 纵梁数 离散分布 1 1,2 x7 横梁数 离散分布 2 1,2,3 x8 横纵梁材料 离散分布 6 4,5,6,7,8,9,10,11,16,17,18,19 x9 背板材料 离散分布 7 1,2,3,4,7,8,9,10,11,12,13,14,5,18,19 x10 面板材料 离散分布 7 1,2,3,4,7,10,11,12,13,14,15 x11 蜂窝材料 离散分布 8 1,2,3,4,5,6,7,8,9,10,11,17,18,19,20 表 3 材料参数
Table 3. Material parameters
序号 材料 密度/(kg·m−3) 弹性模量/MPa 泊松比 屈服强度/MPa 切线模量/MPa 断后延伸率/% 1 NP-500 7 800 210 000 0.29 1 382 3 306.3 12 2 NP-550 7 800 210 000 0.29 1 540 4 391.633 9.5 3 Q1100 7 800 210 000 0.29 1 145 1 951 13 4 Q890 7 800 210 000 0.29 955 223 17.5 5 Q690 7 800 210 000 0.29 718 294.778 19 6 700E 7 800 210 000 0.29 700 1 683 14 7 960E 7 800 210 000 0.29 960 1 991 10 8 7A52 2 600 68 000 0.34 345 1 001 7 9 7B52 2 600 68 000 0.34 470 1 111 7 10 Ti-6Al-4V 4 460 113 800 0.30 1 100 300 11 11 Tii-6Cr-5Mo-5V-4Al 4 430 113 800 0.30 1 250 2 564 5 12 685 1 446 333 0.038 8 0.328 0.13 1.29 13 FD53 1 350 203 0.070 1 0.282 0.11 19.94 14 6252 1 889 438.3 0.045 06 0.394 89 0.320 94 2.520 56 15 LH 1 100 322 0.101 3 0.3587 0.2 7.2 16 Q620 620 524 11.1 0.54 0.59 2.12 17 H14 188 426 0.015 0.34 0.13 0.13 18 752 440 410 0.016 6 0.493 0.076 0.10 19 762 575 226 0 0.362 0.046 0.87 20 Q235 7 800 210 000 0.29 235 580 0.24 表 4 优化拉丁超立方采样样本
Table 4. Optimization of Latin hypercube samples
样本 x1/mm x2/mm x3/mm x4/mm x5/mm x6 x7 x8 x9 x10 x11 1 9.630 3 7.226 9 9.848 7 8.369 7 0.452 9 2 3 18 3 10 9 55 10.789 9 10.722 7 8.638 7 7.428 6 0.347 9 2 3 19 2 3 3 56 7.815 1 6.151 3 6.890 8 9.647 1 0.394 1 2 3 7 9 11 20 119 8.420 2 6.285 7 9.983 2 7.697 5 0.263 9 1 2 4 8 14 11 120 10.487 4 7.294 1 6.218 5 12.000 0 0.595 8 1 3 11 1 15 17 表 5 代理模型精度比较
Table 5. Accuracy comparisons of different surrogate models
代理模型 R2 Erms R2 Erms fD(x) fM(x) RSM 0.958 16 0.073 56 0.756 99 0.186 21 RBF 0.998 27 0.015 08 0.978 26 0.088 46 KRG 0.999 26 0.007 45 0.983 48 0.036 04 表 6 模拟优化结果对比
Table 6. Comparison of simulation optimization results
优化目标 优化结果 可靠度/% 优化结果 可靠度/% 确定性优化 可靠性优化 fD(x) 99.26 mm 67.3 99.22 mm 99.7 fM(x) 290.8 kg − 315.4 kg − 表 7 最优设计参数
Table 7. Optimal design parameters
部件 厚度/mm 材料 面板 7.1 960E 背板 4.2 Q890 横梁2根 8.0 700E 纵梁1根 8.0 700E 蜂窝胞元 0.6 7A52 表 8 实验与模拟结果比较
Table 8. Comparison of experimentand simulation results
组件结构 结果 fD(x)/mm fM(x)/kg 初始结构 模拟 185.9 430 实验 190.0 430 优化结构 模拟 97.9 320 实验 96.0 320 -
[1] GRUJICIC M, BELL W C. A computational analysis of survivability of a pick-up truck subjected to mine detonation loads [J]. Multidiscipline Modeling in Materials and Structures, 2011, 7(4): 386–423. DOI: 10.1108/15736101111185289. [2] 吕晓江, 周大永, 孙光永, 等. 基于多目标可靠性优化的骡车车身耐撞性及轻量化设计 [J]. 汽车工程, 2018, 40(7): 790–794. DOI: 10.19562/j.chinasae.qcgc.2018.07.007.LYU X J, ZHOU D Y, SUN G Y, et al. Crashworthiness and lightweight design of mule-car body based on multi-objective reliability optimization [J]. Automotive Engineering, 2018, 40(7): 790–794. DOI: 10.19562/j.chinasae.qcgc.2018.07.007. [3] PAN F, ZHU P, CHEN W, et al. Application of conservative surrogate to reliability based vehicle design for crashworthiness [J]. Journal of Shanghai Jiaotong University (Science), 2013, 18(2): 159–165. DOI: 10.1007/s12204-012-1240-x. [4] 陈崇, 詹振飞, 李洁, 等. 基于材料参数不确定性量化的车身稳健性优化 [C] // 第十八届汽车安全技术学术会议. 江苏苏州, 2015. [5] GU X G, SUN G Y, LI G Y, et al. A Comparative study on multiobjective reliable and robust optimization for crashworthiness design of vehicle structure [J]. Structural and Multidisciplinary Optimization, 2013, 48(3): 669–684. DOI: 10.1007/s00158-013-0921-x. [6] 魏然, 王显会, 周云波, 等. 爆炸冲击下车辆底部结构与座椅系统多参数优化研究 [J]. 振动与冲击, 2016, 35(14): 90–95. DOI: 10.13465/j.cnki.jvs.2016.14.014.WEI R, WANG X H, ZHOU Y B, et al. Multi-parameter optimization of vehicle underbody configuration and occupant restraint system under explosion shock load [J]. Journal of Vibration and Shock, 2016, 35(14): 90–95. DOI: 10.13465/j.cnki.jvs.2016.14.014. [7] 李明星, 王显会, 周云波, 等. 基于神经网络的车辆抗冲击防护组件优化 [J]. 爆炸与冲击, 2020, 40(2): 024203. DOI: 10.11883/bzycj-2019-0055.LI M X, WANG X H, ZHOU Y B, et al. Research on optimization of vehicle anti-shock protection components based on neural network [J]. Explosion and Shock Waves, 2020, 40(2): 024203. DOI: 10.11883/bzycj-2019-0055. [8] GU X G, LU J W. Reliability-based robust assessment for multiobjective optimization design of improving occupant restraint system performance [J]. Computers in Industry, 2014, 65(8): 1169–1180. DOI: 10.1016/j.compind.2014.07.003. [9] YOUN B D, CHOI K K, YANG R J, et al. Reliability-based design optimization for crashworthiness of vehicle side impact [J]. Structural and Multidisciplinary Optimization, 2004, 26(3−4): 272–283. DOI: 10.1007/s00158-003-0345-0. [10] 张义民, 贺向东, 刘巧伶, 等. 非正态分布参数的车辆零件可靠性稳健设计 [J]. 机械工程学报, 2005, 41(11): 102–108. DOI: 10.3321/j.issn:0577-6686.2005.11.018.ZHANG Y M, HE X D, LIU Q L, et al. Reliability-based robust design of vehicle components with non-normal distribution parameters [J]. Chinese Journal of Mechanical Engineering, 2005, 41(11): 102–108. DOI: 10.3321/j.issn:0577-6686.2005.11.018. [11] 白阳阳. 某型车正碰乘员约束系统可靠性设计[D]. 长沙: 湖南大学, 2012: 38−48. [12] 李鹏, 周云波, 王显会, 等. 含蜂窝夹层的V型底部复合装甲仿真研究 [J]. 爆破, 2019, 36(1): 44–48, 69. DOI: 10.3963/j.issn.1001-487X.2019.01.007.LI P, ZHOU Y B, WANG X H, et al. Simulation on V-shaped bottom composite armor with honeycomb sandwich [J]. Blasting, 2019, 36(1): 44–48, 69. DOI: 10.3963/j.issn.1001-487X.2019.01.007. [13] 陈鑫, 王佳宁, 沈传亮, 等. 承载式车身结构局部改型的快速耦合参数化优化设计 [J]. 同济大学学报(自然科学版), 2019, 47(8): 1189–1194. DOI: 10.11908/j.issn.0253-374x.2019.08.016.CHEN X, WANG J N, SHEN C L, et al. Rapidly coupling parametric optimal design of partial structure modification for integral body [J]. Journal of Tongji University (Natural Science), 2019, 47(8): 1189–1194. DOI: 10.11908/j.issn.0253-374x.2019.08.016. [14] 刘德顺, 岳文辉, 杜小平. 不确定性分析与稳健设计的研究进展 [J]. 中国机械工程, 2006, 17(17): 1834–1841. DOI: 10.3321/j.issn: 1004-132X.2006.17.018.LIU D S, YUE W H, DU X P. Study on uncertainty analysis and robust design: a review [J]. China Mechanical Engineering, 2006, 17(17): 1834–1841. DOI: 10.3321/j.issn: 1004-132X.2006.17.018. [15] GAO F L, REN S, LIN C, et al. Metamodel-based Multi-objective reliable optimization for front structure of electric vehicle [J]. Automotive Innovation, 2018, 1(2): 131–139. DOI: 10.1007/s42154-018-0018-8. [16] 陈媛媛. 基于代理模型的汽车碰撞安全性多目标优化研究[D]. 重庆: 重庆大学, 2017: 6−8. [17] 王若冰, 赵志军, 肖和业, 等. 力学环境约束下剪切销可靠性分析及优化设计 [J]. 爆炸与冲击, 2019, 39(7): 075101. DOI: 10.11883/bzycj-2018-0146.WANG R B, ZHAO Z J, XIAO H Y, et al. Reliability analysis and design optimization of a shear pin constrained by mechanical boundaries [J]. Explosion and Shock Waves, 2019, 39(7): 075101. DOI: 10.11883/bzycj-2018-0146. -