爆炸载荷下双向梯度仿生夹芯圆板的力学行为

王海任 李世强 刘志芳 雷建银 李志强 王志华

王海任, 李世强, 刘志芳, 雷建银, 李志强, 王志华. 爆炸载荷下双向梯度仿生夹芯圆板的力学行为[J]. 爆炸与冲击, 2021, 41(4): 043201. doi: 10.11883/bzycj-2020-0132
引用本文: 王海任, 李世强, 刘志芳, 雷建银, 李志强, 王志华. 爆炸载荷下双向梯度仿生夹芯圆板的力学行为[J]. 爆炸与冲击, 2021, 41(4): 043201. doi: 10.11883/bzycj-2020-0132
WANG Hairen, LI Shiqiang, LIU Zhifang, LEI Jianyin, LI Zhiqiang, WANG Zhihua. Mechanical behaviors of bi-directional gradient bio-inspired circular sandwich plates under blast loading[J]. Explosion And Shock Waves, 2021, 41(4): 043201. doi: 10.11883/bzycj-2020-0132
Citation: WANG Hairen, LI Shiqiang, LIU Zhifang, LEI Jianyin, LI Zhiqiang, WANG Zhihua. Mechanical behaviors of bi-directional gradient bio-inspired circular sandwich plates under blast loading[J]. Explosion And Shock Waves, 2021, 41(4): 043201. doi: 10.11883/bzycj-2020-0132

爆炸载荷下双向梯度仿生夹芯圆板的力学行为

doi: 10.11883/bzycj-2020-0132
基金项目: 国家自然科学基金(11772216, 11772215, 11902215)
详细信息
    作者简介:

    王海任(1988- ),男,博士研究生,wanghairen0125@link.tyut.edu.cn

    通讯作者:

    王志华(1977- ),男,博士,教授,wangzh@tyut.edu.cn

  • 中图分类号: O342

Mechanical behaviors of bi-directional gradient bio-inspired circular sandwich plates under blast loading

  • 摘要: 基于王莲仿生面内梯度芯层,通过引入面外梯度,设计了一种双向梯度仿生夹芯圆板。在此基础上,运用ABAQUS有限元软件,对不同排列方式的双向梯度夹芯圆板在不同爆炸载荷作用下的响应进行了数值仿真,着重分析了不同仿生夹芯圆板的前后面板挠度、芯层压缩量、变形模式和能量吸收等特性,得到了一种抗爆性能较好的芯层排列方式。结果表明:相较于单一的面外梯度夹芯圆板,合理设计的双向梯度仿生夹芯圆板可以有效降低后面板挠度,并提高芯层的能量吸收。
  • 图  1  芯层设计策略

    Figure  1.  Core design strategy

    图  2  有限元模型的网格划分

    Figure  2.  Adopted mesh of the FE model

    图  3  有限元模拟有效性验证

    Figure  3.  Verification of finite element simulation

    图  4  不同爆炸载荷下不同密度梯度夹芯板后面板的最大挠度

    Figure  4.  Deflection of the back panel of the sandwich panelwith different density gradients under various blast loadings

    图  5  k=1.2的两种不同面外梯度芯层在炸药为25 g时的前后面板挠度曲线

    Figure  5.  Deflections of front and back panels with two different out-of-plane gradient cores with k=1.2 when the explosive mass is 25 g

    图  6  k=1.2时两种夹芯板的变形模式

    Figure  6.  Deformation mode diagram of two kinds of sandwich plates with k=1.2

    图  7  不同梯度芯层能量吸收比较

    Figure  7.  Comparisons of energy absorption of different gradient cores

    图  8  自由边界的梯度夹芯圆板在炸药质量为25 g时芯层能量吸收

    Figure  8.  Energy absorption of graded sandwich circular plate with free boundary when explosive mass is 25 g

    表  1  铝合金的材料参数

    Table  1.   Material parameters of aluminum alloy

    材料ρ/(kg·m−3)E/GPavσy/GPaEtan/GPa
    5052铝合金2 700700.30.200.10
    6060T4铝合金2 700700.30.080.07
    下载: 导出CSV

    表  2  模型类型与相关参数

    Table  2.   Model type and related parameters

    模型面内梯度芯层C2各部分壁厚/mm面外梯度面外相对密度/%
    $\delta_1 $$\delta_2 $$\delta_3 $$\delta_4 $$\delta_5 $C1C2C3
    k=0.8- Ⅰ负梯度0.0310.0390.0490.0600.076负梯度1.302.002.70
    k=0.8- Ⅱ负梯度0.0310.0390.0490.0600.076正梯度2.702.001.30
    k=1.2- Ⅰ混合梯度0.1000.0820.0680.0570.048负梯度1.302.002.70
    k=1.2- Ⅱ混合梯度0.1000.0820.0680.0570.048正梯度2.702.001.30
    k=1.6- Ⅰ正梯度0.2000.1240.0770.0480.030负梯度1.302.002.70
    k=1.6- Ⅱ正梯度0.2000.1240.0770.0480.030正梯度2.702.001.30
    UG- Ⅰ均匀0.0770.0730.0700.0600.048负梯度1.302.002.70
    UG- Ⅱ均匀0.0770.0730.0700.0600.048正梯度2.702.001.30
    下载: 导出CSV

    表  3  C2面内梯度模型各部分相对密度

    Table  3.   Relative density of in-plane gradient model C2

    模型相对密度/%
    $\overline \rho _1 $$\overline \rho _2 $$\overline \rho _3 $$\overline \rho _4 $$\overline \rho _5 $
    k=0.80.801.061.392.003.13
    k=1.01.551.651.721.972.48
    k=1.22.562.261.971.881.97
    k=1.65.143.412.221.591.25
    UG2.002.002.002.002.00
    下载: 导出CSV
  • [1] ZHANG Q C, YANG X H, LI P, et al. Bioinspired engineering of honeycomb structure: using nature to inspire human innovation [J]. Progress in Materials Science, 2015, 74: 332–400. DOI: 10.1016/j.pmatsci.2015.05.001.
    [2] LIU Z, MEYERS M A, ZHANG Z, et al. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications [J]. Progress in Materials Science, 2017, 88: 467–498. DOI: 10.1016/j.pmatsci.2017.04.013.
    [3] CAI Z B, LI Z Y, DING Y, et al. Preparation and impact resistance performance of bionic sandwich structure inspired from beetle forewing [J]. Composites Part B: Engineering, 2019, 161: 490–501. DOI: 10.1016/j.compositesb.2018.12.139.
    [4] ZHANG Y, WANG J, WANG C H, et al. Crashworthiness of bionic fractal hierarchical structures [J]. Materials & Design, 2018, 158: 147–159. DOI: 10.1016/j.matdes.2018.08.028.
    [5] SONG J F, XU S C, WANG H X, et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures [J]. Thin-Walled Structures, 2018, 125: 76–88. DOI: 10.1016/j.tws.2018.01.010.
    [6] 李世强, 李鑫, 吴桂英, 等. 梯度蜂窝夹芯板在爆炸荷载作用下的动力响应 [J]. 爆炸与冲击, 2016, 36(3): 333–339. DOI: 10.11883/1001-1455(2016)03-0333-07.

    LI S Q, LI X, WU G Y, et al. Dynamic response of functionally graded honeycomb sandwich plates under blast loading [J]. Explosion and Shock Waves, 2016, 36(3): 333–339. DOI: 10.11883/1001-1455(2016)03-0333-07.
    [7] ZHANG J J, WANG Z H, ZHAO L M. Dynamic response of functionally graded cellular materials based on the Voronoi model [J]. Composites Part B: Engineering, 2016, 85: 176–187. DOI: 10.1016/j.compositesb.2015.09.045.
    [8] WANG X K, ZHENG Z J, YU J L. Crashworthiness design of density-graded cellular metals [J]. Theoretical and Applied Mechanics Letters, 2013, 3(3): 9–13. DOI: 10.1063/2.1303101.
    [9] ZHENG J, QIN Q H, WANG T J. Impact plastic crushing and design of density-graded cellular materials [J]. Mechanics of Materials, 2016, 94: 66–78. DOI: 10.1016/j.mechmat.2015.11.014.
    [10] SHEN C J, YU T X, LU G. Double shock mode in graded cellular rod under impact [J]. International Journal of Solids and Structures, 2013, 50(1): 217–233. DOI: 10.1016/j.ijsolstr.2012.09.021.
    [11] SHEN C J, LU G, YU T X. Dynamic behavior of graded honeycombs: a finite element study [J]. Composite Structures, 2013, 98: 282–293. DOI: 10.1016/j.compstruct.2012.11.002.
    [12] YANG J, WANG S L, DING Y Y, et al. Crashworthiness of graded cellular materials: a design strategy based on a nonlinear plastic shock model [J]. Materials Science and Engineering: A, 2017, 680: 411–420. DOI: 10.1016/j.msea.2016.11.010.
    [13] LIANG M Z, LI Z B, LU F Y, et al. Theoretical and numerical investigation of blast responses of continuous-density graded cellular materials [J]. Composite Structures, 2017, 164: 170–179. DOI: 10.1016/j.compstruct.2016.12.065.
    [14] 于渤, 卢天健. 蜂窝夹芯结构的面内梯度设计 [C] // 中国力学大会-2015. 上海: 中国力学学会, 2015: 87.
    [15] YU B, HAN B, SU P B, et al. Graded square honeycomb as sandwich core for enhanced mechanical performance [J]. Materials & Design, 2016, 89: 642–652. DOI: 10.1016/j.matdes.2015.09.154.
    [16] TAO Y, DUAN S Y, WEN W B, et al. Enhanced out-of-plane crushing strength and energy absorption of in-plane graded honeycombs [J]. Composites Part B: Engineering, 2017, 118: 33–40. DOI: 10.1016/j.compositesb.2017.03.002.
    [17] WANG H R, LI S Q, LIU Z F, et al. Investigation on the dynamic response of circular sandwich panels with the bio-inspired gradient core [J]. Thin-Walled Structures, 2020, 149: 106667. DOI: 10.1016/j.tws.2020.106667.
    [18] 陶义, 王宗彦, 王珂, 等. 基于王莲叶脉分布的塔式起重机臂架结构仿生设计 [J]. 机械设计与制造, 2017(3): 36–39. DOI: 10.19356/j.cnki.1001-3997.2017.03.010.

    TAO Y, WANG Z Y, WANG K, et al. Structural bionic design for tower cranes boom based on King Lotus leaf vein branched structure [J]. Machinery Design & Manufacture, 2017(3): 36–39. DOI: 10.19356/j.cnki.1001-3997.2017.03.010.
    [19] VAZIRI A, HUTCHINSON J W. Metal sandwich plates subject to intense air shocks [J]. International Journal of Solids and Structures, 2007, 44(6): 2021–2035. DOI: 10.1016/j.ijsolstr.2006.08.038.
    [20] 强斌, 刘宇杰, 阚前华. 粘接界面泡沫铝夹芯板的三点弯曲失效数值模拟 [J]. 材料工程, 2014, 4(11): 97–101. DOI: 10.11868/j.issn.1001-4381.2014.11.017.

    QIANG B, LIU Y J, KAN Q H. Numerical simulation for three-point bending failure of aluminum foam sandwich panels with cohesive interface [J]. Journal of Materials Engineering, 2014, 4(11): 97–101. DOI: 10.11868/j.issn.1001-4381.2014.11.017.
    [21] LIU Z F, HAO W Q, XIE J M, et al. Axial-impact buckling modes and energy absorption properties of thin-walled corrugated tubes with sinusoidal patterns [J]. Thin-Walled Structures, 2015, 94: 410–423. DOI: 10.1016/j.tws.2015.05.002.
    [22] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. DOI: 10.1115/1.1629109.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  976
  • HTML全文浏览量:  405
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 修回日期:  2020-06-09
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-04-14

目录

    /

    返回文章
    返回