基于物质点法的船体板架结构高速侵彻毁伤模式研究

王逸南 姚熊亮 王治 杨娜娜

王逸南, 姚熊亮, 王治, 杨娜娜. 基于物质点法的船体板架结构高速侵彻毁伤模式研究[J]. 爆炸与冲击, 2021, 41(10): 103301. doi: 10.11883/bzycj-2020-0134
引用本文: 王逸南, 姚熊亮, 王治, 杨娜娜. 基于物质点法的船体板架结构高速侵彻毁伤模式研究[J]. 爆炸与冲击, 2021, 41(10): 103301. doi: 10.11883/bzycj-2020-0134
WANG Yinan, YAO Xiongliang, WANG Zhi, YANG Nana. Different failure modes during the high-velocity penetration on the ship plate structure through material point method[J]. Explosion And Shock Waves, 2021, 41(10): 103301. doi: 10.11883/bzycj-2020-0134
Citation: WANG Yinan, YAO Xiongliang, WANG Zhi, YANG Nana. Different failure modes during the high-velocity penetration on the ship plate structure through material point method[J]. Explosion And Shock Waves, 2021, 41(10): 103301. doi: 10.11883/bzycj-2020-0134

基于物质点法的船体板架结构高速侵彻毁伤模式研究

doi: 10.11883/bzycj-2020-0134
基金项目: 国家自然科学基金(51779056,51879048)
详细信息
    作者简介:

    王逸南(1995- ),男,博士研究生,wanghuang@hrbeu.edu.cn

    通讯作者:

    姚熊亮(1963- ),男,博士生导师,教授,yaoxiongliang@hrbeu.edu.cn

  • 中图分类号: O383

Different failure modes during the high-velocity penetration on the ship plate structure through material point method

  • 摘要: 本文通过数值模拟的方法研究了截卵型弹体冲击下921A钢板的毁伤模式。 跟以往试验进行对比,发现数值结果与实验结果吻合良好。 在3种不同工况下,剩余速度与实验结果吻合良好,误差小于5%。随着弹着点位置的变化,加筋板的失效模式发生变化。击中靶板中心时,加强筋发生撕裂,目标板在左右两侧产生对称的花瓣型破坏模式。 随着弹着点位置的偏移,加强筋的撕裂程度逐渐减小,最后仅仅发生塑性应变。并且目标板上的破坏不再对称,左侧板的动态响应从花瓣破坏变为小面积断裂,最后仅保留塑性变形。右侧板始终产生花瓣型失效模式,但花瓣的数量和形式始终在变化。结果表明,物质点法可以很好地应用,并为今后舰船穿透研究提供参考。
  • 图  1  靶板结构[3]

    Figure  1.  Target plate[3]

    图  2  弹体结构[3]

    Figure  2.  Projectile[3]

    图  3  失效模型示意图

    Figure  3.  Sketch of the failure model

    图  4  剩余速度随3种不同冲击速度的变化情况

    Figure  4.  Variation of residual velocity with three different impact velocities

    图  5  弹着点位于小筋[3]

    Figure  5.  Impact point on small stiffener[3]

    图  6  弹着点位于纵横加筋[3]

    Figure  6.  Impact point on cross-stiffener stiffener [3]

    图  7  弹着点位于小筋

    Figure  7.  Impact point on small stiffener

    图  8  弹着点位于纵横加筋

    Figure  8.  Impact point on cross-stiffener stiffener

    图  9  主应力分布图

    Figure  9.  Principal stress distribution diagram

    图  10  剪切应力分布图

    Figure  10.  Shear stress distribution diagram

    图  11  弹着点位于小筋

    Figure  11.  Impact point on small stiffener

    图  12  弹着点位于纵横加筋

    Figure  12.  Impact point on cross-stiffener stiffener

    图  13  整体布置示意图

    Figure  13.  Overall layout diagram

    图  14  加强筋毁伤示意图

    Figure  14.  Stiffener damage diagram

    图  15  靶板整体毁伤示意图

    Figure  15.  Target damage diagram

    图  16  加强筋毁伤示意图

    Figure  16.  Stiffener damage diagram

    图  17  靶板整体毁伤示意图

    Figure  17.  Target damage diagram

    图  18  靶板的毁伤模式示意图

    Figure  18.  Stiffened target plate failure mode diagram

    图  19  弹着点位置偏移5 mm

    Figure  19.  The impact point is offset by 5 mm

    图  20  弹着点位置偏移6 mm

    Figure  20.  The impact point is offset by 6mm

    图  21  弹着点位置偏移7 mm

    Figure  21.  The impact point is offset by 7 mm

    图  22  弹着点位置偏移8 mm

    Figure  22.  The impact point is offset by 8 mm

    图  23  弹着点位置偏移9 mm

    Figure  23.  The impact point is offset by 9 mm

    图  24  弹着点位置偏移10 mm

    Figure  24.  The impact point is offset by 10 mm

    图  25  弹着点位置偏移11 mm

    Figure  25.  The impact point is offset by 11 mm

    图  26  弹着点位置偏移12 mm

    Figure  26.  The impact point is offset by 12 mm

    图  27  弹着点位置偏移13 mm

    Figure  27.  The impact point is offset by 13 mm

    图  28  弹着点位置偏移14 mm

    Figure  28.  The impact point is offset by 14 mm

    图  29  弹着点位置偏移5 mm

    Figure  29.  The impact point is offset by 5 mm

    图  30  弹着点位置偏移6 mm[2]

    Figure  30.  The impact point is offset by 6 mm[2]

    表  1  靶板材料参数数值[2-3]

    Table  1.   Material parameters used for target[2-3]

    泊松比A/MPaB/MPanCm$ \lambda $smax/MPatmax/MPa
    0.356857600.5870.0151.0271685342
    下载: 导出CSV

    表  2  剩余速度的数值和实验结果

    Table  2.   Numerical values and experimental results of residual velocity

    工况冲击速度/
    (m·s−1
    弹着点位置实验剩余速度/
    (m·s−1
    物质点剩余速度/
    (m·s−1
    距大筋/
    mm
    距小筋/
    mm
    1617.70.031.0574.9571.7
    2606.5583.8560.1
    3567.755.052.0526.8515.0
    下载: 导出CSV

    表  3  数值和实验无量纲数结果对比

    Table  3.   Comparison of numerical and experimental dimensionless number results

    工况无量纲数 $ \dfrac{{{v_r}}}{{{v_i}}} $误差/%
    实验数值
    10.9310.9260.5
    20.9630.9234.2
    30.9280.9082.2
    下载: 导出CSV
  • [1] 张中国, 黄风雷, 段卓平, 等. 弹体侵彻带加强筋结构靶的实验研究 [J]. 爆炸与冲击, 2004, 24(5): 431–436.

    ZHANG Z G, HUANG F L, DUAN Z P, et al. The experimental research for projectile penetrating the structural target with rebar [J]. Explosion and Shock Waves, 2004, 24(5): 431–436.
    [2] 段卓平. 半穿甲弹丸对加筋靶板侵彻的终点弹道的实验和理论研究 [J]. 爆炸与冲击, 2005, 25(6): 547–552.

    DUAN Z P. The experimental and theoretical research for end-point trajectory of warhead penetrating ribbings structural target [J]. Explosion and Shock Waves, 2005, 25(6): 547–552.
    [3] 段卓平, 张中国, 李金柱, 等. 半穿甲战斗部对加筋靶板和均质靶板垂直侵彻的实验研究 [J]. 弹箭与制导学报, 2005, 25(2): 148–150;157. DOI: 10.3969/j.issn.1673-9728.2005.02.051.

    DUAN Z P, ZHANG Z G, LI J Z, et al. The experimental research for warhead vertically penetrating homogeneous and ribbings structural target [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(2): 148–150;157. DOI: 10.3969/j.issn.1673-9728.2005.02.051.
    [4] 姚熊亮, 吴子奇, 王治, 等. 战斗部对舰船靶标侵彻毁伤效能研究 [J]. 哈尔滨工程大学学报, 2019, 40(1): 141–145. DOI: 10.11990/jheu.201808002.

    YAO X L, WU Z Q, WANG Z, et al. Study on damage effectiveness of warhead on ship target [J]. Journal of Harbin Engineering University, 2019, 40(1): 141–145. DOI: 10.11990/jheu.201808002.
    [5] 宋卫东, 宁建国, 张中国, 等. 多层加筋靶板的侵彻模型与等效方法 [J]. 弹道学报, 2004, 16(3): 54–59. DOI: 10.3969/j.issn.1004-499X.2004.03.010.

    SONG W D, NING J G, ZHANG Z G, et al. Penetration model and equivalence method of multi-layered stiffener plates [J]. Journal of Ballistics, 2004, 16(3): 54–59. DOI: 10.3969/j.issn.1004-499X.2004.03.010.
    [6] 展婷变, 吕淑芳, 黄德雨. 截卵形弹体正侵彻加强筋结构靶的理论分析 [J]. 弹道学报, 2012, 24(1): 52–57. DOI: 10.3969/j.issn.1004-499X.2012.01.011.

    ZHAN T B, LV S F, HUANG D Y. Theoretical analysis on normal penetration of truncated oval-nosed projectile into stiffened plate [J]. Journal of Ballistics, 2012, 24(1): 52–57. DOI: 10.3969/j.issn.1004-499X.2012.01.011.
    [7] 巨圆圆, 张庆明. 尖卵形弹丸侵彻加筋薄靶剩余速度的理论分析 [J]. 兵工学报, 2015, 36(S1): 126–130.

    JU Y Y, ZHANG Q M. Theoretical analysis on residual velocity of oval-nosed projectile penetrating into stiffened thin plate [J]. Acta Armamentarii, 2015, 36(S1): 126–130.
    [8] 陈长海, 朱锡, 侯海量. 加筋板架抗动能穿甲的等效防护厚度研究 [J]. 海军工程大学学报, 2010, 22(1): 35–42. DOI: 10.7495/j.issn.1009-3486.2010.01.007.

    CHEN C H, ZHU X, HOU H L. Equivalent protection thickness of stiffened plate against kinetic piercing [J]. Journal of Naval University of Engineering, 2010, 22(1): 35–42. DOI: 10.7495/j.issn.1009-3486.2010.01.007.
    [9] 张宁. 均质靶板和加筋靶板抗弹性能的数值模拟研究 [J]. 兵器装备工程学报, 2016, 37(2): 30–33. DOI: 10.11809/scbgxb2016.02.008.

    ZHANG N. Numerical simulation for effect of homogeneous and stiffened plates on resisting projectile penetration [J]. Journal of Ordnance Equipment Engineering, 2016, 37(2): 30–33. DOI: 10.11809/scbgxb2016.02.008.
    [10] MA S, ZHANG X, QIU X M. Comparison study of MPM and SPH in modeling hypervelocity impact problems [J]. International Journal of Impact Engineering, 2009, 36(2): 272–282.
    [11] LIAN Y P, ZHANG X, LIU Y. Coupling of finite element method with material point method by local multi-mesh contact method [J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47−48): 3482–3494.
    [12] 秦业志, 姚熊亮, 王志凯, 等. 基于物质点法的弹体侵彻靶板破甲特性数值模拟 [J]. 中国舰船研究, 2018, 13(3): 118–124. DOI: 10.19693/j.issn.1673-3185.01173.

    QIN Y Z, YAO X L, WANG Z K, et al. Numerical simulation of projectile penetration into steel plate based on material point method [J]. Chinese Journal of Ship Research, 2018, 13(3): 118–124. DOI: 10.19693/j.issn.1673-3185.01173.
    [13] 谢桂兰, 陈飞, 龚曙光, 等. 基于物质点法不同头部形状弹体侵彻动靶过程的仿真研究 [J]. 应用力学学报, 2019, 36(3): 573–579;758. DOI: 10.11776/cjam.36.03.D019.

    XIE G L, CHEN F, LONG S G, et al. Numerical simulation on the projectile with different nose shapes penetrating moving target based on material point method [J]. Chinese Journal of Applied Mechanics, 2019, 36(3): 573–579;758. DOI: 10.11776/cjam.36.03.D019.
    [14] 李依潇, 王生捷. 使用新型物态方程的超高速碰撞物质点法模拟 [J]. 爆炸与冲击, 2019, 39(10): 145–151. DOI: 10.11883/bzycj-2018-0261.

    LI Y X, WANG S J. Simulation of hypervelocity impact by the material point method coupled with a new equation of state [J]. Explosion and Shock Waves, 2019, 39(10): 145–151. DOI: 10.11883/bzycj-2018-0261.
    [15] WANG Y, YANG N, ZHANG W, et al. Material point method and its application in different failure modes of grillage structure under penetration [J]. Ships and Offshore Structures, 2020, 15(9): 998–1010. DOI: 10.1080/17445302.2019.1699326.
    [16] 张雄, 廉艳平, 刘岩, 等. 物质点法[M]. 第1版. 北京: 清华大学出版社, 2013: 38−65.
    [17] 杨鹏飞. 局部化破坏问题的物质点法研究[D]. 北京: 清华大学, 2013: 71−78.
    [18] 郑勇刚, 顾元宪, 陈震. 薄膜破坏过程数值模拟的MPM方法 [J]. 力学学报, 2006, 38(3): 347–355. DOI: 10.3321/j.issn:0459-1879.2006.03.009.

    ZHENG Y G, GU Y X, CHEN Z. Numerical simulation of thin film failure with MPM [J]. Chinese Journal of Theoretical Applied Mechanics, 2006, 38(3): 347–355. DOI: 10.3321/j.issn:0459-1879.2006.03.009.
  • 加载中
图(30) / 表(3)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  365
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 修回日期:  2020-12-04
  • 网络出版日期:  2021-09-18
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回