Analysis of underwater shock wave attenuation by air bubble curtain based on bubble shape
-
摘要: 气泡帷幕是水下爆炸冲击波防护的重要手段,对其作用机理及技术参数的深入研究对水下爆破安全与应用具有重要意义。采用高速摄影技术对室内小型水下气泡帷幕模型拍摄发现气幕在形成过程和与水下爆炸冲击波相互作用过程中均具有高度非连续性和非均匀性,且气幕区域内气体与液体混杂,界面轮廓复杂多样。在此基础上,考虑气泡形状及界面影响下,通过LS-DYNA有限元软件自带的APDL语言进行编程,实现了在设定的气幕区域内,通过设定气泡直径变化范围及气泡直径之间的最小差异值随机投放一定数量不同直径的气泡来模拟真实气幕中气泡的分布,并通过改变固定区域内气泡个数来模拟不同气压值工况下的气幕效果。分析发现该方法能够更加真实反映气幕在冲击波防护过程中的防护机理,随着单位区域内气泡数量的增大,防护效果越明显,但当气泡数量达到一定数量后气幕整体连续性及稳定性基本固定,防护效果也趋于稳定。Abstract: Bubble curtain is an important means for protection against underwater explosion shock wave. It is of great significance to study the mechanism and technical parameters of bubble curtain regarding the safety and application of underwater blasting. By using high-speed photography technology and video framing processing technology, indoor small underwater bubble curtain model is photographed and analyzed. It is found that the gas curtain is highly discontinuous and inhomogeneous in both the formation process and the interaction process with the underwater explosion shock wave. The gas and liquid are mixed in the air curtain area, and the interface contour is complex and diverse. Air displacement will directly affect the quality of the air bubble curtain. The larger the air displacement, the better the continuity and quality of air curtain. On this basis, considering the influences of bubble shape, interface, and gas-liquid coexistence, programming is carried out through the APDL language that comes with the LS-DYNA finite element software. By setting the variation range of bubble diameter and the minimum difference between bubble diameters, a certain number of bubbles of different diameters are randomly positioned to simulate the bubble distributions in the real air curtain. The air curtain quality under different gas source pressure can be simulated by changing the number of bubbles in the set air curtain area. It is found that this method can better reflect the protection mechanism of air curtain against the shock wave. Comparing the protective performance of air curtain with different bubble numbers on the same shock wave, it shows that the protective performance increases with the increase of bubble density. However, when the number of bubbles reaches a threshold number, the overall continuity and stability of the air curtain are basically fixed, and the protection effect tends to be stable.
-
Key words:
- bubble curtain /
- underwater blasting /
- shock wave /
- numerical analysis /
- random distributio
-
表 1 材料状态方程参数表
Table 1. Material state equation parameter table
C0/GPa C1/GPa C2/GPa C3/GPa C4/GPa C5/GPa C6/GPa E0/GPa 水 0 2.25 0 0 0 0 0 0 空气 0 0 0 0 0.4 0.4 0 2.53×10−4 表 2 各监测点峰值统计表
Table 2. Summary of peak pressures at each monitoring point
测点编号 峰值1/MPa t1/ms 峰值2/MPa t2/ms S 87.1 0.32 6.09 0.98 A1 106.0 0.24 9.25 0.88 A2 13.3 0.52 6.40 1.18 B1 122.0 0.22 26.00 0.86 B2 18.6 0.52 13.10 1.08 C1 97.3 0.24 31.90 0.94 C2 18.5 0.56 15.70 1.04 -
[1] 彭亚雄, 吴立, 李春军, 等. 水下钻孔爆破水击波特性及气泡帷幕削压效果研究 [J]. 爆破, 2019, 36(1): 38–43. DOI: 10.3963/j.issn.1001-487X.2019.01.006.PENG Y X, WU L, LI C J, et al. Characteristics of water shock wave from underwater hole blasting and weakening pressure effect of bubble curtain in water [J]. Blasting, 2019, 36(1): 38–43. DOI: 10.3963/j.issn.1001-487X.2019.01.006. [2] 谢达建, 吴立, 洪江, 等. 气泡帷幕对水下爆破冲击波的削弱作用研究 [J]. 人民长江, 2018, 49(8): 72–77. DOI: 10.16232/j.cnki.1001-4179.2018.08.014.XIE D J, WU L, HONG J, et al. Study on weakening effect of bubble curtain on water shock wave in underwater blasting [J]. Yangtze River, 2018, 49(8): 72–77. DOI: 10.16232/j.cnki.1001-4179.2018.08.014. [3] 胡伟才, 吴立, 舒利, 等. 不同设置方式下气泡帷幕对水中冲击波衰减特性的影响 [J]. 科学技术与工程, 2018, 18(17): 33–38. DOI: 10.3969/j.issn.1671-1815.2018.17.006.HU W C, WU L, SHU L, et al. Influence of water shock wave on attenuation characteristics under bubble curtain with different settings [J]. Science Technology and Engineering, 2018, 18(17): 33–38. DOI: 10.3969/j.issn.1671-1815.2018.17.006. [4] 张兵文, 张文扬, 吴暖, 等. 预裂爆破与气泡帷幕技术在水下爆破中的应用 [J]. 工程爆破, 2015, 21(5): 6–9. DOI: 10.3969/j.issn.1006-7051.2015.05.002.ZHANG B W, ZHANG W Y, WU N, et al. Application of presplitting blasting and air bubble curtain technologies in underwater blasting [J]. Engineering Blasting, 2015, 21(5): 6–9. DOI: 10.3969/j.issn.1006-7051.2015.05.002. [5] 王立军, 李浩, 马津渤. 桩基码头应用气泡帷幕技术抵抗水下爆炸冲击波的可行性研究 [J]. 防护工程, 2011, 33(2): 72–75.WANG L J, LI H, MA J B. The feasibility of bubble curtain technology used in naval ports to withstand the shock waves caused by underwater explosions [J]. Protection Engineering, 2011, 33(2): 72–75. [6] 余英. 气泡帷幕在三峡工程RCC围堰爆破拆除中的应用 [J]. 水电与新能源, 2010(4): 8–11. DOI: 10.3969/j.issn.1671-3354.2010.04.003.YU Y. Application of bubble curtain in blasting-demolition of RCC coffer dam of TGP [J]. Hydropower and New Energy, 2010(4): 8–11. DOI: 10.3969/j.issn.1671-3354.2010.04.003. [7] 朱安周, 张可玉, 詹发民, 等. 气泡帷幕衰减水中冲击波频谱特性实验研究 [J]. 爆破, 2004, 21(4): 12–14. DOI: 10.3963/j.issn.1001-487X.2004.04.004.ZHU A Z, ZHANG K Y, ZHAN F M, et al. Experimental study on the attenuation of underwater shock wave spectrum characteristics by bubble curtain [J]. Blasting, 2004, 21(4): 12–14. DOI: 10.3963/j.issn.1001-487X.2004.04.004. [8] 伍俊, 庄铁栓, 闫鹏, 等. 多功能水中爆炸实验装置抗爆性能分析与试验研究 [J]. 防护工程, 2013, 35(4): 11–16.WU J, ZHUANG T S, YAN P, et al. Test study and analysis of explosion resistance performance of the multi-function experiment device for underwater explosion [J]. Protection Engineering, 2013, 35(4): 11–16. [9] 王兴雁, 詹发民, 周方毅, 等. 气泡帷幕削减水击波压力作用因素分析 [J]. 爆破, 2012, 29(4): 23–27. DOI: 10.3963/j.issn.1001-487X.2012.04.006.WANG X Y, ZHAN F M, ZHOU F Y, et al. Effect of bubble curtains on underwater shockwave reducing [J]. Blasting, 2012, 29(4): 23–27. DOI: 10.3963/j.issn.1001-487X.2012.04.006. [10] 谢金怀, 何树斌, 屈科, 等. 气泵法生成气泡帷幕的特性研究 [J]. 海洋技术学报, 2019, 38(1): 12–17. DOI: 10.3969/j.issn.1003-2029.2019.01.003.XIE J H, HE S B, QU K, et al. Study on the characteristics of bubble curtain generated by the air pump method [J]. Journal of Ocean Technology, 2019, 38(1): 12–17. DOI: 10.3969/j.issn.1003-2029.2019.01.003. [11] 刘欣, 顾文彬, 陈学平. 气泡帷幕对水中冲击波衰减特性的数值模拟研究[C]//中国力学学会. 中国力学学会工程爆破专业委员会2015年会论文集. 2015: 79−84.LIU X, GU W B, CHEN X P. Numerical simulation study of attenuation characteristics of water shock wave under bubble curtain [C]//Chinese Society of Mechanics. Proceedings of 2015 Annual Meeting of Engineering Blasting Committee of Chinese Society of Mechanics. 2015: 79−84. [12] 张成兴, 王永学, 王国玉, 等. 静水中气泡帷幕产生水平流的数值模拟研究 [J]. 水动力学研究与进展:A辑, 2010, 25(1): 59–66. DOI: 10.3969/j.issn.1000-4874.2010-01.009.ZHANG C X, WANG Y X, WANG G Y, et al. Numerical simulation study on the horizontal current generated by air bubbles curtain in still water [J]. Hydrodynamic Research and Progress Series A, 2010, 25(1): 59–66. DOI: 10.3969/j.issn.1000-4874.2010-01.009. [13] 贾虎, 郑伟花, 罗强, 等. 爆炸气泡帷幕对水中冲击波能量的衰减特性 [J]. 含能材料, 2015, 23(10): 1015–1019. DOI: 10.11943/j.issn.1006-9941.2015.10.018.JIA H, ZHENG W H, LUO Q, et al. Attenuation characteristics of underwater explosion bubble curtain on the shock [J]. Energetic materials, 2015, 23(10): 1015–1019. DOI: 10.11943/j.issn.1006-9941.2015.10.018. [14] 胡亚峰, 金建峰, 顾文彬, 等. 爆炸实验水池防护性能及动力学响应分析 [J]. 爆炸与冲击, 2017, 37(6): 1001–1009. DOI: 10.11883/1001-1455(2017)06-1001-09.HU Y F, JIN J F, GU W B, et al. Protective performance and dynamic response analysis of explosion testing pool [J]. Explosion and Shock, 2017, 37(6): 1001–1009. DOI: 10.11883/1001-1455(2017)06-1001-09. [15] 刘天云, 龚书堂, 胡伟才, 等. 水下钻孔爆破水击波的传播规律及气泡帷幕对水击波的削减作用 [J]. 爆破器材, 2020, 49(2): 16–22. DOI: 10.3969/j.issn.1001-8352.2020.02.003.LIU T Y, GONG S T, HU W C, et al. Propagation law of water hammer wave in underwater drilling blasting and reduction of bubble curtain on water hammer wave [J]. Explosive Materials, 2020, 49(2): 16–22. DOI: 10.3969/j.issn.1001-8352.2020.02.003.