基于气泡形态影响的水下气幕对冲击波衰减效果分析

司剑峰 钟冬望 李雷斌

司剑峰, 钟冬望, 李雷斌. 基于气泡形态影响的水下气幕对冲击波衰减效果分析[J]. 爆炸与冲击, 2021, 41(7): 073201. doi: 10.11883/bzycj-2020-0136
引用本文: 司剑峰, 钟冬望, 李雷斌. 基于气泡形态影响的水下气幕对冲击波衰减效果分析[J]. 爆炸与冲击, 2021, 41(7): 073201. doi: 10.11883/bzycj-2020-0136
SI Jianfeng, ZHONG Dongwang, LI Leibin. Analysis of underwater shock wave attenuation by air bubble curtain based on bubble shape[J]. Explosion And Shock Waves, 2021, 41(7): 073201. doi: 10.11883/bzycj-2020-0136
Citation: SI Jianfeng, ZHONG Dongwang, LI Leibin. Analysis of underwater shock wave attenuation by air bubble curtain based on bubble shape[J]. Explosion And Shock Waves, 2021, 41(7): 073201. doi: 10.11883/bzycj-2020-0136

基于气泡形态影响的水下气幕对冲击波衰减效果分析

doi: 10.11883/bzycj-2020-0136
基金项目: 国家自然科学基金(51574184)
详细信息
    作者简介:

    司剑峰(1987- ),男,硕士,工程师,sijian.feng@163.com

    通讯作者:

    钟冬望(1963-  ),男,博士,教授,zhongdw123@wust.edu.cn

  • 中图分类号: O389

Analysis of underwater shock wave attenuation by air bubble curtain based on bubble shape

  • 摘要: 气泡帷幕是水下爆炸冲击波防护的重要手段,对其作用机理及技术参数的深入研究对水下爆破安全与应用具有重要意义。采用高速摄影技术对室内小型水下气泡帷幕模型拍摄发现气幕在形成过程和与水下爆炸冲击波相互作用过程中均具有高度非连续性和非均匀性,且气幕区域内气体与液体混杂,界面轮廓复杂多样。在此基础上,考虑气泡形状及界面影响下,通过LS-DYNA有限元软件自带的APDL语言进行编程,实现了在设定的气幕区域内,通过设定气泡直径变化范围及气泡直径之间的最小差异值随机投放一定数量不同直径的气泡来模拟真实气幕中气泡的分布,并通过改变固定区域内气泡个数来模拟不同气压值工况下的气幕效果。分析发现该方法能够更加真实反映气幕在冲击波防护过程中的防护机理,随着单位区域内气泡数量的增大,防护效果越明显,但当气泡数量达到一定数量后气幕整体连续性及稳定性基本固定,防护效果也趋于稳定。
  • 图  1  气幕在爆炸冲击波作用下的形态

    Figure  1.  The shape of the air curtain under the action of explosion shock wave

    图  2  气幕爆源侧关键点运动轨迹分析图

    Figure  2.  Analysis of the movement trajectories of key points on the side of the air curtain towards the explosion source

    图  3  数值计算模型参数

    Figure  3.  Model parameters used in numerical calculation

    图  4  冲击波作用过程压力云图

    Figure  4.  Contour plots of pressure at nine instants during the interactions of shock wave with air curtain

    图  5  监测点位置示意图

    Figure  5.  Schematic diagram of the location of the monitoring points

    图  6  气幕前应力波压力时程曲线图

    Figure  6.  Stress wave pressure time history curve before the air curtain

    图  7  气幕后应力波压力时程曲线

    Figure  7.  Stress wave pressure time history curve after the air curtain

    图  8  S点和B2点压力时程曲线对比图

    Figure  8.  Comparison of pressure time history curve at point S and point B2

    图  9  各测点冲量对比图

    Figure  9.  Comparison of impulse at each measuring point

    图  10  气幕区域随机投放气泡效果

    Figure  10.  Schematic representation of randomly placed different bubble numbers in the air curtain area

    图  11  不同工况下监测点9应力波时程曲线

    Figure  11.  Pressure time history of monitoring point 9under different working conditions

    图  12  各工况下冲击波衰减率统计图

    Figure  12.  Statistical chart of shock wave attenuation ratio under various working conditions

    表  1  材料状态方程参数表

    Table  1.   Material state equation parameter table

    C0/GPaC1/GPaC2/GPaC3/GPaC4/GPaC5/GPaC6/GPaE0/GPa
    02.25000000
    空气00000.40.402.53×10−4
    下载: 导出CSV

    表  2  各监测点峰值统计表

    Table  2.   Summary of peak pressures at each monitoring point

    测点编号峰值1/MPat1/ms峰值2/MPat2/ms
    S 87.10.32 6.090.98
    A1106.00.24 9.250.88
    A2 13.30.52 6.401.18
    B1122.00.2226.000.86
    B2 18.60.5213.101.08
    C1 97.30.2431.900.94
    C2 18.50.5615.701.04
    下载: 导出CSV
  • [1] 彭亚雄, 吴立, 李春军, 等. 水下钻孔爆破水击波特性及气泡帷幕削压效果研究 [J]. 爆破, 2019, 36(1): 38–43. DOI: 10.3963/j.issn.1001-487X.2019.01.006.

    PENG Y X, WU L, LI C J, et al. Characteristics of water shock wave from underwater hole blasting and weakening pressure effect of bubble curtain in water [J]. Blasting, 2019, 36(1): 38–43. DOI: 10.3963/j.issn.1001-487X.2019.01.006.
    [2] 谢达建, 吴立, 洪江, 等. 气泡帷幕对水下爆破冲击波的削弱作用研究 [J]. 人民长江, 2018, 49(8): 72–77. DOI: 10.16232/j.cnki.1001-4179.2018.08.014.

    XIE D J, WU L, HONG J, et al. Study on weakening effect of bubble curtain on water shock wave in underwater blasting [J]. Yangtze River, 2018, 49(8): 72–77. DOI: 10.16232/j.cnki.1001-4179.2018.08.014.
    [3] 胡伟才, 吴立, 舒利, 等. 不同设置方式下气泡帷幕对水中冲击波衰减特性的影响 [J]. 科学技术与工程, 2018, 18(17): 33–38. DOI: 10.3969/j.issn.1671-1815.2018.17.006.

    HU W C, WU L, SHU L, et al. Influence of water shock wave on attenuation characteristics under bubble curtain with different settings [J]. Science Technology and Engineering, 2018, 18(17): 33–38. DOI: 10.3969/j.issn.1671-1815.2018.17.006.
    [4] 张兵文, 张文扬, 吴暖, 等. 预裂爆破与气泡帷幕技术在水下爆破中的应用 [J]. 工程爆破, 2015, 21(5): 6–9. DOI: 10.3969/j.issn.1006-7051.2015.05.002.

    ZHANG B W, ZHANG W Y, WU N, et al. Application of presplitting blasting and air bubble curtain technologies in underwater blasting [J]. Engineering Blasting, 2015, 21(5): 6–9. DOI: 10.3969/j.issn.1006-7051.2015.05.002.
    [5] 王立军, 李浩, 马津渤. 桩基码头应用气泡帷幕技术抵抗水下爆炸冲击波的可行性研究 [J]. 防护工程, 2011, 33(2): 72–75.

    WANG L J, LI H, MA J B. The feasibility of bubble curtain technology used in naval ports to withstand the shock waves caused by underwater explosions [J]. Protection Engineering, 2011, 33(2): 72–75.
    [6] 余英. 气泡帷幕在三峡工程RCC围堰爆破拆除中的应用 [J]. 水电与新能源, 2010(4): 8–11. DOI: 10.3969/j.issn.1671-3354.2010.04.003.

    YU Y. Application of bubble curtain in blasting-demolition of RCC coffer dam of TGP [J]. Hydropower and New Energy, 2010(4): 8–11. DOI: 10.3969/j.issn.1671-3354.2010.04.003.
    [7] 朱安周, 张可玉, 詹发民, 等. 气泡帷幕衰减水中冲击波频谱特性实验研究 [J]. 爆破, 2004, 21(4): 12–14. DOI: 10.3963/j.issn.1001-487X.2004.04.004.

    ZHU A Z, ZHANG K Y, ZHAN F M, et al. Experimental study on the attenuation of underwater shock wave spectrum characteristics by bubble curtain [J]. Blasting, 2004, 21(4): 12–14. DOI: 10.3963/j.issn.1001-487X.2004.04.004.
    [8] 伍俊, 庄铁栓, 闫鹏, 等. 多功能水中爆炸实验装置抗爆性能分析与试验研究 [J]. 防护工程, 2013, 35(4): 11–16.

    WU J, ZHUANG T S, YAN P, et al. Test study and analysis of explosion resistance performance of the multi-function experiment device for underwater explosion [J]. Protection Engineering, 2013, 35(4): 11–16.
    [9] 王兴雁, 詹发民, 周方毅, 等. 气泡帷幕削减水击波压力作用因素分析 [J]. 爆破, 2012, 29(4): 23–27. DOI: 10.3963/j.issn.1001-487X.2012.04.006.

    WANG X Y, ZHAN F M, ZHOU F Y, et al. Effect of bubble curtains on underwater shockwave reducing [J]. Blasting, 2012, 29(4): 23–27. DOI: 10.3963/j.issn.1001-487X.2012.04.006.
    [10] 谢金怀, 何树斌, 屈科, 等. 气泵法生成气泡帷幕的特性研究 [J]. 海洋技术学报, 2019, 38(1): 12–17. DOI: 10.3969/j.issn.1003-2029.2019.01.003.

    XIE J H, HE S B, QU K, et al. Study on the characteristics of bubble curtain generated by the air pump method [J]. Journal of Ocean Technology, 2019, 38(1): 12–17. DOI: 10.3969/j.issn.1003-2029.2019.01.003.
    [11] 刘欣, 顾文彬, 陈学平. 气泡帷幕对水中冲击波衰减特性的数值模拟研究[C]//中国力学学会. 中国力学学会工程爆破专业委员会2015年会论文集. 2015: 79−84.

    LIU X, GU W B, CHEN X P. Numerical simulation study of attenuation characteristics of water shock wave under bubble curtain [C]//Chinese Society of Mechanics. Proceedings of 2015 Annual Meeting of Engineering Blasting Committee of Chinese Society of Mechanics. 2015: 79−84.
    [12] 张成兴, 王永学, 王国玉, 等. 静水中气泡帷幕产生水平流的数值模拟研究 [J]. 水动力学研究与进展:A辑, 2010, 25(1): 59–66. DOI: 10.3969/j.issn.1000-4874.2010-01.009.

    ZHANG C X, WANG Y X, WANG G Y, et al. Numerical simulation study on the horizontal current generated by air bubbles curtain in still water [J]. Hydrodynamic Research and Progress Series A, 2010, 25(1): 59–66. DOI: 10.3969/j.issn.1000-4874.2010-01.009.
    [13] 贾虎, 郑伟花, 罗强, 等. 爆炸气泡帷幕对水中冲击波能量的衰减特性 [J]. 含能材料, 2015, 23(10): 1015–1019. DOI: 10.11943/j.issn.1006-9941.2015.10.018.

    JIA H, ZHENG W H, LUO Q, et al. Attenuation characteristics of underwater explosion bubble curtain on the shock [J]. Energetic materials, 2015, 23(10): 1015–1019. DOI: 10.11943/j.issn.1006-9941.2015.10.018.
    [14] 胡亚峰, 金建峰, 顾文彬, 等. 爆炸实验水池防护性能及动力学响应分析 [J]. 爆炸与冲击, 2017, 37(6): 1001–1009. DOI: 10.11883/1001-1455(2017)06-1001-09.

    HU Y F, JIN J F, GU W B, et al. Protective performance and dynamic response analysis of explosion testing pool [J]. Explosion and Shock, 2017, 37(6): 1001–1009. DOI: 10.11883/1001-1455(2017)06-1001-09.
    [15] 刘天云, 龚书堂, 胡伟才, 等. 水下钻孔爆破水击波的传播规律及气泡帷幕对水击波的削减作用 [J]. 爆破器材, 2020, 49(2): 16–22. DOI: 10.3969/j.issn.1001-8352.2020.02.003.

    LIU T Y, GONG S T, HU W C, et al. Propagation law of water hammer wave in underwater drilling blasting and reduction of bubble curtain on water hammer wave [J]. Explosive Materials, 2020, 49(2): 16–22. DOI: 10.3969/j.issn.1001-8352.2020.02.003.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  712
  • HTML全文浏览量:  328
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 修回日期:  2020-09-07
  • 网络出版日期:  2021-06-24
  • 刊出日期:  2021-07-05

目录

    /

    返回文章
    返回