Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于气泡形态影响的水下气幕对冲击波衰减效果分析

司剑峰 钟冬望 李雷斌

俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅. 动高压加载下锆基金属玻璃强度测量[J]. 爆炸与冲击, 2014, 34(1): 1-5.
引用本文: 司剑峰, 钟冬望, 李雷斌. 基于气泡形态影响的水下气幕对冲击波衰减效果分析[J]. 爆炸与冲击, 2021, 41(7): 073201. doi: 10.11883/bzycj-2020-0136
Yu Yu-ying, Xi Feng, Dai Cheng-da, Cai Ling-cang, Tan Hua, Li Xue-mei. Measurement of strength in a Zr-based bulk metallic glass under dynamic high-pressure loading[J]. Explosion And Shock Waves, 2014, 34(1): 1-5.
Citation: SI Jianfeng, ZHONG Dongwang, LI Leibin. Analysis of underwater shock wave attenuation by air bubble curtain based on bubble shape[J]. Explosion And Shock Waves, 2021, 41(7): 073201. doi: 10.11883/bzycj-2020-0136

基于气泡形态影响的水下气幕对冲击波衰减效果分析

doi: 10.11883/bzycj-2020-0136
基金项目: 国家自然科学基金(51574184)
详细信息
    作者简介:

    司剑峰(1987- ),男,硕士,工程师,sijian.feng@163.com

    通讯作者:

    钟冬望(1963-  ),男,博士,教授,zhongdw123@wust.edu.cn

  • 中图分类号: O389

Analysis of underwater shock wave attenuation by air bubble curtain based on bubble shape

  • 摘要: 气泡帷幕是水下爆炸冲击波防护的重要手段,对其作用机理及技术参数的深入研究对水下爆破安全与应用具有重要意义。采用高速摄影技术对室内小型水下气泡帷幕模型拍摄发现气幕在形成过程和与水下爆炸冲击波相互作用过程中均具有高度非连续性和非均匀性,且气幕区域内气体与液体混杂,界面轮廓复杂多样。在此基础上,考虑气泡形状及界面影响下,通过LS-DYNA有限元软件自带的APDL语言进行编程,实现了在设定的气幕区域内,通过设定气泡直径变化范围及气泡直径之间的最小差异值随机投放一定数量不同直径的气泡来模拟真实气幕中气泡的分布,并通过改变固定区域内气泡个数来模拟不同气压值工况下的气幕效果。分析发现该方法能够更加真实反映气幕在冲击波防护过程中的防护机理,随着单位区域内气泡数量的增大,防护效果越明显,但当气泡数量达到一定数量后气幕整体连续性及稳定性基本固定,防护效果也趋于稳定。
  • 金属玻璃作为原子无序堆垛结构的代表性材料, 有独特的原子短程有序、长程无序的微观结构, 兼有金属和玻璃特性, 是具有广泛应用前景的新型结构和功能材料[1]。金属玻璃力学性能的研究有助于理解其变形和损伤破坏机理、提高其结构性能。

    对一般环境下金属玻璃的弹塑性变形、损伤及破坏等力学性能已有了大量研究, C.A.Schuh等[2]和M.M.Trexler等[3]分别对相关研究进行了综合评述。在已有研究中, 金属玻璃的屈服强度特性是重点关注的内容之一。很多准静态实验研究结果表明, 金属玻璃的屈服强度与应力状态有关。J.Lu等[4]采用围压法研究了受约束状态下Zr41.25Ti13.75Cu12.5Ni10Be22.5金属玻璃的屈服强度特性(最大压力约2GPa), 结果显示屈服强度压力硬化效应非常明显。近年来, 高压、高应变率等极端条件下金属玻璃的冲击波响应特性逐渐引起重视, 目前已有Zr基金属玻璃的冲击绝热线[5-6]、层裂现象[7-8]和弹塑性变形行为[9-12]的一些实验及理论模拟研究。F.P.Yuan等[9]运用压剪炮技术对Zr41.25Ti13.75Cu12.5Ni10Be22.5金属玻璃屈服强度的压力相关性进行了研究(最大压力8.8GPa), 实验结果与准静态不同:压剪加载下压力或法向应力对屈服强度影响很小; 而S.J.Turneaure等[10]和俞宇颖等[11]的27GPa压力范围内平靶冲击实验结果表明, 锆基金属玻璃的冲击加载波阵面存在剪应力衰减。总之, 金属玻璃的屈服强度特性研究限于较低压力范围, 而且相关结论并不一致, 须进一步研究。此外, 表征金属玻璃强度特性的另外一个物理量——剪切模量也仅有2GPa压力范围内的超声测量结果[13], 还未见冲击波加载下的高压剪切模量数据。

    本文中, 对一种锆基金属玻璃进行平靶冲击, 通过测量样品/透明窗口界面冲击加载-卸载粒子速度剖面, 获得37~66GPa压力范围的屈服强度和剪切模量数据; 结合实验测得的强度数据, 对锆基金属玻璃冲击波阵面剪应力松弛现象[10-11]进行分析。

    为简化冲击加载-卸载过程样品中的波系作用, 利于粒子速度剖面的处理分析, 实验采用如图 1所示的反向碰撞方式, 即由待测样品(锆基金属玻璃)作为飞片直接撞击透明的单晶LiF窗口。LiF窗口碰撞面镀有1μm铝膜作为光学测试的反射面, 为保护长历时测量过程中铝膜不受破坏, 铝膜前粘接了8μm铜箔。飞片衬垫为低阻抗的聚碳酸酯, 实现对冲击后样品的卸载。DISAR(displacement interferometer system for any reflector)技术[14]用于测量锆基金属玻璃样品/LiF窗口界面粒子速度剖面, 飞片速度采用磁测速技术测量。

    图  1  实验装置示意图
    Figure  1.  Schematic of experimental setup

    实验用金属玻璃为Zr51Ti5Ni10Cu25Al9(原子百分比), 平均密度为约6.740g/cm3, 超声测量的常态纵波和横波声速分别为4.820和2.193km/s[6]。根据测定的纵波和横波声速, 可以得到体波声速为4.101km/s, 剪切模量为32.4GPa, 泊松比为0.369。样品名义尺寸为∅28mm×3mm, 表面抛光处理, 平行度2~5μm。LiF窗口尺寸为∅28mm×12mm, 密度为2.638g/cm3, 冲击波速度D=5.148km/s+1.353u(u为粒子速度)[15]

    在∅30mm二级轻气炮上进行了4发冲击加载-卸载实验, 冲击速度为2.889~4.480km/s, 锆基金属玻璃样品产生的压力为37~66GPa。实验的参数列于表 1中, 其中ρ0为锆基金属玻璃样品初始密度, Hs为样品厚度, W为冲击速度, σH为冲击压力, τH+τc为屈服强度, G为剪切模量。

    表  1  平靶冲击实验参数及结果
    Table  1.  Experimental conditions and results for four plate-impact experiments
    No. ρ0/(g·cm-3) Hs/mm W/(km·s-1) σH/GPa (τH+τc)/GPa G/GPa
    1 6.744 3.142 2.889 37.28 1.73 47.59
    2 6.743 3.120 3.604 49.69 1.88 63.25
    3 6.736 3.016 3.640 50.33 1.99 62.96
    4 6.655 3.007 4.480 66.42 2.39 79.47
    下载: 导出CSV 
    | 显示表格

    由DISAR测得的4发实验锆基金属玻璃样品/LiF窗口界面粒子速度剖面如图 2所示。卸载过程中呈现明显的弹塑性特征, 表明在66GPa冲击压力范围内锆基金属玻璃没有发生冲击熔化。根据波传播特性, 可由粒子速度剖面(见图 2), 得到沿着卸载过程的拉格朗日纵波声速:

    图  2  样品/窗口界面粒子速度剖面
    Figure  2.  Particle velocity profiles measured at sample/window interface
    cL=HstHs/Ds
    (1)

    式中:Ds为样品的冲击波速度, t为来自样品后界面的卸载波到达样品/窗口界面时间(以碰靶为起始时刻)。在18~100GPa冲击压力范围, 该锆基金属玻璃的冲击波速度Ds=4.241km/s+1.015u[6]

    图 3给出了由上述加载-卸载粒子速度剖面得到的卸载过程拉格朗日纵波声速cL随粒子速度u的变化。其中, 粒子速度u由样品/窗口界面粒子速度uw结合增量型阻抗匹配法计算得到, 由此得到的粒子速度计及了卸载波在样品/窗口界面反射造成的影响[16]。与金属材料相类似, 锆基金属玻璃卸载过程也呈现准弹性行为特征, 即卸载过程弹、塑性波速为光滑过渡, 而没有发生突降[17]。尽管冲击压力不同, 但塑性声速与粒子速度关系基本一致。将塑性段声速线性外延可得相应的拉格朗日体波声速cB

    图  3  卸载过程的拉格朗日纵波和体波声速
    Figure  3.  Longitudinal and bulk Lagrangian wave speed during unloading

    根据J.R.Asay等[18]提出的双屈服面强度测量方法, 对沿卸载过程的声速进行计算, 可得到:

    τH+τc=34ρ0ucuHc2Lc2Bc2L du
    (2)

    式中:uHuc分别为Hugoniot状态对应粒子速度和卸载进入塑性屈服时对应的粒子速度(见图 3), τHτc分别为Hugoniot状态剪应力和临界剪应力, τH+τc为屈服强度。

    冲击压缩下(Hugoniot态)的剪切模量:

    G=34ρ20ρ(c2Lc2B)
    (3)

    式中:ρ0为材料的初始密度, ρ为冲击压缩下(Hugoniot态)的密度, cLcB分别为Hugoniot态对应的拉格朗日纵波和体波声速(见图 3)。

    计算得到的屈服强度和剪切模量列于表 1中。屈服强度和剪切模量随冲击压力的变化如图 4所示。在涉及的冲击压力范围, Zr51Ti5Ni10Cu25Al9金属玻璃的屈服强度和剪切模量均随冲击压力的增加而增加, 出现了压力硬化效应。其中, 屈服强度在0~37GPa压力范围变化很小, 这与F.P.Yuan等[9]应用压剪炮技术测量的6.3~8.8GPa压力范围Zr41.25Ti13.75Cu12.5Ni10Be22.5金属玻璃屈服强度变化情况一致; 在37~66GPa范围, 屈服强度则明显增加。

    图  4  屈服强度和剪切模量随冲击压力的变化
    Figure  4.  Variation of yield strength and shear modulus with shock pressure

    与上述的压力硬化效应不同, 已有的实验结果表明金属玻璃的冲击加载波阵面存在剪应力衰减现象。S.J.Turneaure等[10]对17GPa冲击压力范围内的实测Zr56.7Cu15.3Ni12.5Nb5.0Al10.0Y0.54金属玻璃粒子速度剖面进行了数值模拟, 发现采用应变软化强度模型计算的剖面才能与实验结果符合。俞宇颖等[11]则通过轴向应力与静水压线的比较获得了10~27GPa冲击压力范围Zr51Ti5Ni10Cu25Al9金属玻璃的冲击加载波阵面剪应力, 表明该金属玻璃的冲击加载波阵面剪应力存在明显衰减, 而且衰减幅度随着冲击压力的增加而增加。

    通常, 材料强冲击导致的损伤/破坏和高温是造成材料强度降低的两种主要因素。如果金属玻璃冲击加载波阵面剪应力衰减是由冲击加载导致的损伤/破坏所引起的, 那么由损伤/破坏材料的Hugoniot态卸载获得的屈服强度和剪切模量也应出现衰减, 但本文中强度测量结果显示一定程度的压力硬化效应, 基于此可以排除损伤/破坏因素; 如果金属玻璃冲击加载波阵面剪应力衰减是由温度软化所引起的, 同样由Hugoniot态卸载获得的屈服强度和剪切模量也应出现衰减, 而且应随冲击压力增加而更明显衰减, 这显然与本文中强度测量结果不相符, 温度因素也可以排除。因此, 导致金属玻璃冲击加载波阵面剪应力衰减的, 并非损伤/破坏或温度软化, 而应有其他控制因素。最近, B.Arman等[12]对平面冲击波加载下二元体系Cu46Zr54金属玻璃的塑性、层裂及原子结构演化进行了分子动力学模拟, 发现金属玻璃冲击波阵面上的剪应力衰减与加载过程材料内部具有较强剪切的原子团簇数量减少有关。但由于分子动力学模拟的粒子速度剖面与实测结果还存在一定差异, 因此上述剪应力衰减的微观机理还需进一步研究确认。

    对Zr51Ti5Ni10Cu25Al9金属玻璃进行了反向碰撞实验, 测得了金属玻璃样品/LiF窗口界面粒子速度剖面, 由此获得了37~66GPa压力范围的屈服强度和剪切模量数据。结果表明, 在上述实验压力范围金属玻璃的屈服强度和剪切模量均随冲击压力的增加而增加, 具有一定程度的压力硬化效应; 进一步分析表明, 金属玻璃冲击加载波阵面剪应力的衰减, 并非由冲击损伤/破坏或温度软化等因素导致。

    哈尔滨工业大学材料科学与工程系沈军教授提供样品了材料, 张毅、王为、叶素华、傅秋卫、汪小松、景海华、蓝强、方茂林、向曜明和靳开诚等在实验测试中给予了帮助, 在此表示感谢。
  • 图  1  气幕在爆炸冲击波作用下的形态

    Figure  1.  The shape of the air curtain under the action of explosion shock wave

    图  2  气幕爆源侧关键点运动轨迹分析图

    Figure  2.  Analysis of the movement trajectories of key points on the side of the air curtain towards the explosion source

    图  3  数值计算模型参数

    Figure  3.  Model parameters used in numerical calculation

    图  4  冲击波作用过程压力云图

    Figure  4.  Contour plots of pressure at nine instants during the interactions of shock wave with air curtain

    图  5  监测点位置示意图

    Figure  5.  Schematic diagram of the location of the monitoring points

    图  6  气幕前应力波压力时程曲线图

    Figure  6.  Stress wave pressure time history curve before the air curtain

    图  7  气幕后应力波压力时程曲线

    Figure  7.  Stress wave pressure time history curve after the air curtain

    图  8  S点和B2点压力时程曲线对比图

    Figure  8.  Comparison of pressure time history curve at point S and point B2

    图  9  各测点冲量对比图

    Figure  9.  Comparison of impulse at each measuring point

    图  10  气幕区域随机投放气泡效果

    Figure  10.  Schematic representation of randomly placed different bubble numbers in the air curtain area

    图  11  不同工况下监测点9应力波时程曲线

    Figure  11.  Pressure time history of monitoring point 9under different working conditions

    图  12  各工况下冲击波衰减率统计图

    Figure  12.  Statistical chart of shock wave attenuation ratio under various working conditions

    表  1  材料状态方程参数表

    Table  1.   Material state equation parameter table

    C0/GPaC1/GPaC2/GPaC3/GPaC4/GPaC5/GPaC6/GPaE0/GPa
    02.25000000
    空气00000.40.402.53×10−4
    下载: 导出CSV

    表  2  各监测点峰值统计表

    Table  2.   Summary of peak pressures at each monitoring point

    测点编号峰值1/MPat1/ms峰值2/MPat2/ms
    S 87.10.32 6.090.98
    A1106.00.24 9.250.88
    A2 13.30.52 6.401.18
    B1122.00.2226.000.86
    B2 18.60.5213.101.08
    C1 97.30.2431.900.94
    C2 18.50.5615.701.04
    下载: 导出CSV
  • [1] 彭亚雄, 吴立, 李春军, 等. 水下钻孔爆破水击波特性及气泡帷幕削压效果研究 [J]. 爆破, 2019, 36(1): 38–43. DOI: 10.3963/j.issn.1001-487X.2019.01.006.

    PENG Y X, WU L, LI C J, et al. Characteristics of water shock wave from underwater hole blasting and weakening pressure effect of bubble curtain in water [J]. Blasting, 2019, 36(1): 38–43. DOI: 10.3963/j.issn.1001-487X.2019.01.006.
    [2] 谢达建, 吴立, 洪江, 等. 气泡帷幕对水下爆破冲击波的削弱作用研究 [J]. 人民长江, 2018, 49(8): 72–77. DOI: 10.16232/j.cnki.1001-4179.2018.08.014.

    XIE D J, WU L, HONG J, et al. Study on weakening effect of bubble curtain on water shock wave in underwater blasting [J]. Yangtze River, 2018, 49(8): 72–77. DOI: 10.16232/j.cnki.1001-4179.2018.08.014.
    [3] 胡伟才, 吴立, 舒利, 等. 不同设置方式下气泡帷幕对水中冲击波衰减特性的影响 [J]. 科学技术与工程, 2018, 18(17): 33–38. DOI: 10.3969/j.issn.1671-1815.2018.17.006.

    HU W C, WU L, SHU L, et al. Influence of water shock wave on attenuation characteristics under bubble curtain with different settings [J]. Science Technology and Engineering, 2018, 18(17): 33–38. DOI: 10.3969/j.issn.1671-1815.2018.17.006.
    [4] 张兵文, 张文扬, 吴暖, 等. 预裂爆破与气泡帷幕技术在水下爆破中的应用 [J]. 工程爆破, 2015, 21(5): 6–9. DOI: 10.3969/j.issn.1006-7051.2015.05.002.

    ZHANG B W, ZHANG W Y, WU N, et al. Application of presplitting blasting and air bubble curtain technologies in underwater blasting [J]. Engineering Blasting, 2015, 21(5): 6–9. DOI: 10.3969/j.issn.1006-7051.2015.05.002.
    [5] 王立军, 李浩, 马津渤. 桩基码头应用气泡帷幕技术抵抗水下爆炸冲击波的可行性研究 [J]. 防护工程, 2011, 33(2): 72–75.

    WANG L J, LI H, MA J B. The feasibility of bubble curtain technology used in naval ports to withstand the shock waves caused by underwater explosions [J]. Protection Engineering, 2011, 33(2): 72–75.
    [6] 余英. 气泡帷幕在三峡工程RCC围堰爆破拆除中的应用 [J]. 水电与新能源, 2010(4): 8–11. DOI: 10.3969/j.issn.1671-3354.2010.04.003.

    YU Y. Application of bubble curtain in blasting-demolition of RCC coffer dam of TGP [J]. Hydropower and New Energy, 2010(4): 8–11. DOI: 10.3969/j.issn.1671-3354.2010.04.003.
    [7] 朱安周, 张可玉, 詹发民, 等. 气泡帷幕衰减水中冲击波频谱特性实验研究 [J]. 爆破, 2004, 21(4): 12–14. DOI: 10.3963/j.issn.1001-487X.2004.04.004.

    ZHU A Z, ZHANG K Y, ZHAN F M, et al. Experimental study on the attenuation of underwater shock wave spectrum characteristics by bubble curtain [J]. Blasting, 2004, 21(4): 12–14. DOI: 10.3963/j.issn.1001-487X.2004.04.004.
    [8] 伍俊, 庄铁栓, 闫鹏, 等. 多功能水中爆炸实验装置抗爆性能分析与试验研究 [J]. 防护工程, 2013, 35(4): 11–16.

    WU J, ZHUANG T S, YAN P, et al. Test study and analysis of explosion resistance performance of the multi-function experiment device for underwater explosion [J]. Protection Engineering, 2013, 35(4): 11–16.
    [9] 王兴雁, 詹发民, 周方毅, 等. 气泡帷幕削减水击波压力作用因素分析 [J]. 爆破, 2012, 29(4): 23–27. DOI: 10.3963/j.issn.1001-487X.2012.04.006.

    WANG X Y, ZHAN F M, ZHOU F Y, et al. Effect of bubble curtains on underwater shockwave reducing [J]. Blasting, 2012, 29(4): 23–27. DOI: 10.3963/j.issn.1001-487X.2012.04.006.
    [10] 谢金怀, 何树斌, 屈科, 等. 气泵法生成气泡帷幕的特性研究 [J]. 海洋技术学报, 2019, 38(1): 12–17. DOI: 10.3969/j.issn.1003-2029.2019.01.003.

    XIE J H, HE S B, QU K, et al. Study on the characteristics of bubble curtain generated by the air pump method [J]. Journal of Ocean Technology, 2019, 38(1): 12–17. DOI: 10.3969/j.issn.1003-2029.2019.01.003.
    [11] 刘欣, 顾文彬, 陈学平. 气泡帷幕对水中冲击波衰减特性的数值模拟研究[C]//中国力学学会. 中国力学学会工程爆破专业委员会2015年会论文集. 2015: 79−84.

    LIU X, GU W B, CHEN X P. Numerical simulation study of attenuation characteristics of water shock wave under bubble curtain [C]//Chinese Society of Mechanics. Proceedings of 2015 Annual Meeting of Engineering Blasting Committee of Chinese Society of Mechanics. 2015: 79−84.
    [12] 张成兴, 王永学, 王国玉, 等. 静水中气泡帷幕产生水平流的数值模拟研究 [J]. 水动力学研究与进展:A辑, 2010, 25(1): 59–66. DOI: 10.3969/j.issn.1000-4874.2010-01.009.

    ZHANG C X, WANG Y X, WANG G Y, et al. Numerical simulation study on the horizontal current generated by air bubbles curtain in still water [J]. Hydrodynamic Research and Progress Series A, 2010, 25(1): 59–66. DOI: 10.3969/j.issn.1000-4874.2010-01.009.
    [13] 贾虎, 郑伟花, 罗强, 等. 爆炸气泡帷幕对水中冲击波能量的衰减特性 [J]. 含能材料, 2015, 23(10): 1015–1019. DOI: 10.11943/j.issn.1006-9941.2015.10.018.

    JIA H, ZHENG W H, LUO Q, et al. Attenuation characteristics of underwater explosion bubble curtain on the shock [J]. Energetic materials, 2015, 23(10): 1015–1019. DOI: 10.11943/j.issn.1006-9941.2015.10.018.
    [14] 胡亚峰, 金建峰, 顾文彬, 等. 爆炸实验水池防护性能及动力学响应分析 [J]. 爆炸与冲击, 2017, 37(6): 1001–1009. DOI: 10.11883/1001-1455(2017)06-1001-09.

    HU Y F, JIN J F, GU W B, et al. Protective performance and dynamic response analysis of explosion testing pool [J]. Explosion and Shock, 2017, 37(6): 1001–1009. DOI: 10.11883/1001-1455(2017)06-1001-09.
    [15] 刘天云, 龚书堂, 胡伟才, 等. 水下钻孔爆破水击波的传播规律及气泡帷幕对水击波的削减作用 [J]. 爆破器材, 2020, 49(2): 16–22. DOI: 10.3969/j.issn.1001-8352.2020.02.003.

    LIU T Y, GONG S T, HU W C, et al. Propagation law of water hammer wave in underwater drilling blasting and reduction of bubble curtain on water hammer wave [J]. Explosive Materials, 2020, 49(2): 16–22. DOI: 10.3969/j.issn.1001-8352.2020.02.003.
  • 期刊类型引用(12)

    1. 张阿漫 ,李世民 ,李帅 ,刘云龙 . 气泡动力学研究进展. 力学学报. 2025(01): 1-16 . 百度学术
    2. 高莲松,高云川,任乐鑫,胡滇渝,杨亚,王优,殷寿陶,杨鹏,张亚波,王雪. 水下气体爆破技术在港口建设中的应用与安全优势分析. 水上安全. 2025(01): 31-33 . 百度学术
    3. 卢林,李文杰,万宇,杜洪波,杨宵. 气泡帷幕对爆破冲击波的削减效果及鱼类安全防护研究. 水运工程. 2024(01): 8-14 . 百度学术
    4. 梁云,吴红波,陈永佳,李基锐,黄菓树,马成帅,张政,叶风明,曾辉莲. 多层气泡膜隔层结构对水下冲击波衰减效果分析. 爆破. 2024(02): 223-231 . 百度学术
    5. 陆少锋,吴红波,马成帅,王尹军,李基锐. 不同孔间距的气泡帷幕对水中冲击波衰减特性的影响. 爆破器材. 2024(04): 52-57 . 百度学术
    6. 刘根生,潘子煜,温德超,陈灿奕,危伟,黄筱云. 气泡幕防疏浚泥沙扩散试验研究. 中国农村水利水电. 2024(07): 110-116 . 百度学术
    7. 李启佳,陈瑞红,邹永胜. 距保护对象不同位置时气泡帷幕削减效果数值模拟. 中国水运. 2024(08): 86-89 . 百度学术
    8. 农志祥,吴红波,王尹军,陈永佳,李基锐,黄菓树,马成帅,徐君. 气泡帷幕对水下爆炸防护及对水中生物保护能力的研究. 工程爆破. 2024(04): 150-155 . 百度学术
    9. 李启佳,陈瑞红,邹永胜. 距保护对象不同位置时气泡帷幕削减效果数值模拟. 中国水运. 2024(15): 86-89 . 百度学术
    10. 范怀斌,陆少锋,莫崇勋,刁约,覃才勇,黄国松. 多层差异性气泡帷幕对水下爆破冲击波的衰减效应的试验研究. 爆破器材. 2023(02): 48-55 . 百度学术
    11. 范怀斌,陆少锋,程扬帆,覃才勇,刁约. 组合帷幕阻波帘对水下冲击波的防护特性分析. 科学技术与工程. 2023(17): 7520-7526 . 百度学术
    12. 杨培君,谢雄刚,任建军,尚延龙,罗香莹. 挡板缓冲下煤与瓦斯突出冲击波传播减能机制研究. 中国安全生产科学技术. 2022(05): 115-121 . 百度学术

    其他类型引用(8)

  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  944
  • HTML全文浏览量:  417
  • PDF下载量:  131
  • 被引次数: 20
出版历程
  • 收稿日期:  2020-05-06
  • 修回日期:  2020-09-07
  • 网络出版日期:  2021-06-24
  • 刊出日期:  2021-07-05

目录

/

返回文章
返回