Rail-guided static/dynamic biaxial tensile test technique
-
摘要: 基于液压伺服高速加载系统,发展了一种材料双轴拉伸力学性能测试技术。利用锥面接触导向驱动方法,把加载锤竖直方向的驱动力转化为水平方向的双轴驱动力,从而实现对十字形试样平面双轴加载。借助有限元数值模拟手段优化了锥面接触角和十字形试样尺寸。当接触锥角为45°时,既有较好的水平驱动转化效率,同时又保持较小的接触力,确保水平驱动加载各组件在弹性变形范围内,可多次重复使用。确定了加载臂狭缝个数、狭缝与减薄区边缘长度和标距段厚度等试样设计关键参数,在十字形试样测试标距段内实现了均匀变形。设计了测力夹持一体化导杆和非接触光学全场应变测试系统,准确获得了试样的应力和应变。利用此平面双轴拉伸加载装置,开展2024-T351铝合金板单轴拉伸实验和激光探测同步性验证实验,验证装置设计的可行性;开展铝合金板材在不同加载速率下的双轴拉伸实验,得到在双轴加载下铝合金板材应力应变曲线,并与单轴加载下实验结果进行了对比分析。
-
关键词:
- 双轴拉伸 /
- 十字样品 /
- 各向异性力学性能 /
- 2024-T351铝合金板
Abstract: Based on the Zwick HTM-5020 hydraulic servo high-speed loading system, a planar biaxial tensile test technique was developed. The biaxial tensile loading device is mainly composed of a cross-shaped cone hammer head, a loading force arm, a cross guide slide rail, and a sample clamping guide rod. The driving force in the vertical direction of the loading hammer is transformed into the horizontal driving force by using the cone contact method, so as to realize the plane biaxial loading of the cruciform specimen. The contact angle of the cone surface and the cruciform specimen geometry was optimized using an Abaqus FEM code. The simulation results show that: (1) when the contact cone angle is 45 °, the horizontal driving conversion efficiency is better and the contact force is smaller than those of others, so that the components loaded by the horizontal driving within the elastic deformation range can be used repeatedly; (2) the key parameters of the cruciform specimen, such as the number of the slits in the loading arm, the length of the slit edge and thinning area, and the thickness of the gauge section, are obtained, so as to realize the uniform deformation of the cruciform specimen in the gauge section. A guide rod integrated measuring force-clamping specimen and a noncontact digital image correlation technique for the measurement of strain were employed in the planar biaxial tensile test device. By using the planar biaxial tensile loading device, the uniaxial tensile test and laser detection synchronicity verification experiment of aluminum alloy plate were carried out to verify the feasibility of the device design. The biaxial tensile tests of the aluminum alloy plates under different strain rates were performed, and the stress-strain curves of the 2024-T351 aluminum alloy sheet under biaxial loading were obtained, which were compared with the results under uniaxial tensile loading. -
表 1 优化后十字试件的最佳尺寸参数
Table 1. The parameters of cruciform samples after optimizing
L/mm M T/mm 1.5 3 0.45 -
[1] MA R, LU Y, WANG L, et al. Influence of rolling route on microstructure and mechanical properties of AZ31 magnesium alloy during asymmetric reduction rolling [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(5): 902–911. DOI: 10.1016/S1003-6326(18)64724-7. [2] XIAO R, LI X X, LANG L H, et al. Biaxial tensile testing of cruciform slim superalloy at elevated temperatures [J]. Materials & Design, 2016, 94: 286–294. DOI: 10.1016/j.matdes.2016.01.045. [3] 陈振, 方国东, 谢军波, 等. 三维轴编 C/C 复合材料双向拉伸实验研究 [J]. 固体火箭技术, 2015, 38(2): 267–272. DOI: 10.7673/j.issn.1006-2793.2015.02.021.CHEN Z, FANG G D, XIE J B, et al. Experiment investigation on biaxial tensile strength of 3D in-plane braided C/C composites [J]. Journal of Solid Rocket Technology, 2015, 38(2): 267–272. DOI: 10.7673/j.issn.1006-2793.2015.02.021. [4] 吴志凯, 江五贵, 郑隆. 界面对双轴纤维增强复合材料力学性能的影响 [J]. 复合材料学报, 2017, 34(1): 217–223. DOI: 10.13801/j.cnki.fhclxb.20160322.004.WU Z K, JIANG W G, ZHENG L. Interfacial effect on mechanical behaviors of bidirectional-fiber-reinforced composites [J]. Acta Materiae Compositae Sinica, 2017, 34(1): 217–223. DOI: 10.13801/j.cnki.fhclxb.20160322.004. [5] PAK S, PARK S, SONG Y S, et al. Micromechanical and dynamic mechanical analyses for characterizing improved interfacial strength of maleic anhydride compatibilized basalt fiber/polypropylene composites [J]. Composite Structures, 2018, 193: 73–79. DOI: 10.1016/j.compstruct.2018.03. 020. [6] 万敏, 周贤宾. 复杂加载路径下板料屈服强化与成形极限的研究进展 [J]. 塑性工程学报, 2000, 7(2): 35–39. DOI: 10.3969/j.issn.1007-2012.2000.02.010.WAN M, ZHOU X B. Research progress on the yielding hardening and forming limit of sheet metals under complex loading paths [J]. Journal of Plasticity Engineering, 2000, 7(2): 35–39. DOI: 10.3969/j.issn.1007-2012.2000.02.010. [7] AN Y G, VEGTER H, ELLIOTT L. A novel and simple method for the measurement of the plane strain work hardening [J]. Journal of Materials Processing Technology., 2004, 155-156: 1616–1622. DOI: 10.1016/j.jmatprotec.2004.04.344. [8] 任家陶, 陈积光, 李冈陵. 双轴拉伸试验研究 [J]. 湘潭大学自然科学学报, 1998, 20(2): 92–96. DOI: CNKI:SUN:XYDZ.0.1998-02-024.REN J T, CHEN J G, LI G L. Experimental research on biaxial tensile test [J]. Natural Science Journal of Xiangtan University, 1998, 20(2): 92–96. DOI: CNKI:SUN:XYDZ.0.1998-02-024. [9] BRUSCHI S, ALTAN T, BANABIC D, et al. Testing and modelling of material behaviour and formability in sheet metal forming [J]. Cirp Annals Manufacturing Technology, 2014, 63(2): 727–749. DOI: 10.1016/j.cirp.2014.05.005. [10] KUWABAR T. Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations [J]. International Journal of Plasticity, 2007, 23(3): 385–419. DOI: 10.1016/j.ijplas.2006.06.003. [11] LIU W, GUINES D, LEOTOING L, et al. Identification of sheet metal hardening for large strains with an in-plane biaxial tensile test and a dedicated cross specimen [J]. International Journal of Mechanical Sciences, 2015, 101−102: 387–398. DOI: 10.1016/j.ijmecsci.2015.08.022. [12] HANNON A, TIERNAN P. A review of planar biaxial tensile test systems for sheet metal [J]. Journal of Materials Processing Technology, 2008, 198(1): 1–13. DOI: 10.1016/j.jmatprotec.2007.10.015. [13] MERKLEIN M, BIASUTTI M. Development of a biaxial tensile machine for characterization of sheet metals [J]. Journal of Materials Processing Technology, 2013, 213(6): 939–946. DOI: 10.1016/j.jmatprotec.2012.12.005. [14] MAKINDE A, THIBODEAU L, NEALE K W. et al Design of a biaxial extensometer for measuring strains in cruciform specimens [J]. Experimental Mechanics, 1992, 32(2): 132–137. DOI: 10.1007/BF02324724. [15] HOFERLIN E, BAEL A V, HOUTTE P V, et al. The design of a biaxial tensile test and its use for the validation of crystallographic yield loci [J]. Modelling & Simulation in Materials Science & Engineering, 2000, 8(4): 423–433. DOI: 10.1088/0965-0393/8/4/302. [16] FERRON G, MAKINDE A. Design and development of a biaxial strength testing device [J]. Journal of Testing & Evaluation, 1988, 16(16): 253–256. [17] SRINICASAN N, VELMURUGAN R, KUMAR R, et al. Deformation behavior of commercially pure (CP) titanium under equi-biaxial tension [J]. Materials Science & Engineering A, 2016, 674: 540–551. DOI: 10.1016/j.msea.2016.08.018. [18] NIKHARE C P. Numerical analysis on the effect of thickness on biaxial tension limits0 [J]. Materials Today: Proceedings, 2018, 5(1): 37–43. DOI: 10.1016/j.matpr.2017.11.050. [19] KARADOGAN C, TAMER M E. A novel and simple cruciform specimen without slits on legs yet higher plastic strains in gauge [J]. Procedia Engineering, 2017, 207: 1922–1927. DOI: 10.1016/j.proeng.2017.10.962. [20] 王犇. 复合材料的双轴试验研究 [J]. 科技创新导报, 2018, 15(11): 19–21. DOI: 10.16660/j.cnki.1674-098X.2018.11.019.WANG B. Research on biaxial test of composite materials [J]. Science and Technology Innovation Herald, 2018, 15(11): 19–21. DOI: 10.16660/j.cnki.1674-098X.2018.11.019. [21] 李玉龙, 金康华, 刘琛琳, 等. 一种动态双轴双向拉伸加载装置及实验方法: CN 20181012019. X [P]. 2018-07-31.LI Y L, JIN K H, LIU C L, et al. Dynamic biaxial bidirectional stretching loading device and experimental method: CN 20181012019. X [P]. 2018- 07-31. [22] 史同亚, 刘东升, 陈伟, 等. 激光选区熔化增材制造GP1不锈钢动态拉伸力学响应与层裂破坏 [J]. 爆炸与冲击, 2019, 39(7): 52–63. DOI: 10.11883/bzycj-2019-0015.SHI T Y, LIU D S, CHEN W, et al. Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting [J]. Explosion and Shock Waves, 2019, 39(7): 52–63. DOI: 10.11883/bzycj-2019-0015. [23] OGDEN R W. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solid [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Scienses, 1972, 32(1575): 565–584. DOI: 10.1098/rspa.1972.0096. [24] 王国权, 刘萌, 姚艳春等. 不同本构模型对橡胶制品有限元法适应性研究 [J]. 力学与实践, 2013, 35(4): 40–47. DOI: 10.6052/1000-0879-13-030.WANG G Q, LIU M, YAO Y C, et al. Application of different constitutive models in the nonlinear finite element method for rubber Parts [J]. Mechanics in Engineering, 2013, 35(4): 40–47. DOI: 10.6052/1000-0879-13-030. [25] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548. DOI: 10.1115/1.3225617. [26] XIAO R. A review of cruciform biaxial tensile testing of sheet metals [J]. Experimental Techniques, 2019, 43(5): 501–520. DOI: 10.1007/s40799-018-00297-6. [27] 蔡登安, 周光明, 曹然, 等. 双轴载荷下复合材料十字型试样几何形状对中心测试区系数的影响 [J]. 复合材料学报, 2015, 32(4): 1138–1144. DOI: 10.13801/j.cnki.fhclxb.20141022.004.CAI D A, ZHOU G M, CAO R, et al. Influence of geometry of composite cruciform specimen under biaxial loading on coefficients of central testing zone [J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1138–1144. DOI: 10.13801/j.cnki.fhclxb.20141022.004. [28] 张振, 王永刚. 基于激光干涉测试技术的分离式Hopkinson压杆实验测试系统 [J]. 爆炸与冲击, 2018, 38(5): 1165–1171. DOI: 10.11883/bzycj-2017-0116.ZHANG Z, WANG Y G. Measurement system for split Hopkinson pressure bar apparatus based on laser interferometry technique [J]. Explosion and Shock Waves, 2018, 38(5): 1165–1171. DOI: 10.11883/bzycj-2017-0116.