滑轨导向式静/动态双轴拉伸实验技术

刘东升 史同亚 谢普初 陈伟 王永刚

刘东升, 史同亚, 谢普初, 陈伟, 王永刚. 滑轨导向式静/动态双轴拉伸实验技术[J]. 爆炸与冲击, 2021, 41(6): 064101. doi: 10.11883/bzycj-2020-0138
引用本文: 刘东升, 史同亚, 谢普初, 陈伟, 王永刚. 滑轨导向式静/动态双轴拉伸实验技术[J]. 爆炸与冲击, 2021, 41(6): 064101. doi: 10.11883/bzycj-2020-0138
LIU Dongsheng, SHI Tongya, XIE Puchu, CHEN Wei, WANG Yonggang. Rail-guided static/dynamic biaxial tensile test technique[J]. Explosion And Shock Waves, 2021, 41(6): 064101. doi: 10.11883/bzycj-2020-0138
Citation: LIU Dongsheng, SHI Tongya, XIE Puchu, CHEN Wei, WANG Yonggang. Rail-guided static/dynamic biaxial tensile test technique[J]. Explosion And Shock Waves, 2021, 41(6): 064101. doi: 10.11883/bzycj-2020-0138

滑轨导向式静/动态双轴拉伸实验技术

doi: 10.11883/bzycj-2020-0138
基金项目: 国家自然科学基金(11972202);科学挑战专题(TZ2018001);国防科技重点实验室稳定支持科研项目(JCKYS2019212009)
详细信息
    作者简介:

    刘东升(1993- ),男,硕士研究生,351974707@qq.com

    通讯作者:

    王永刚(1976- ),男,博士,教授,wangyonggang@nbu.edu.cn

  • 中图分类号: O347.3

Rail-guided static/dynamic biaxial tensile test technique

  • 摘要: 基于液压伺服高速加载系统,发展了一种材料双轴拉伸力学性能测试技术。利用锥面接触导向驱动方法,把加载锤竖直方向的驱动力转化为水平方向的双轴驱动力,从而实现对十字形试样平面双轴加载。借助有限元数值模拟手段优化了锥面接触角和十字形试样尺寸。当接触锥角为45°时,既有较好的水平驱动转化效率,同时又保持较小的接触力,确保水平驱动加载各组件在弹性变形范围内,可多次重复使用。确定了加载臂狭缝个数、狭缝与减薄区边缘长度和标距段厚度等试样设计关键参数,在十字形试样测试标距段内实现了均匀变形。设计了测力夹持一体化导杆和非接触光学全场应变测试系统,准确获得了试样的应力和应变。利用此平面双轴拉伸加载装置,开展2024-T351铝合金板单轴拉伸实验和激光探测同步性验证实验,验证装置设计的可行性;开展铝合金板材在不同加载速率下的双轴拉伸实验,得到在双轴加载下铝合金板材应力应变曲线,并与单轴加载下实验结果进行了对比分析。
  • 图  1  双轴拉伸加载装置结构装配图

    Figure  1.  Structural assembly drawing of biaxial tensile loading device

    图  2  基于Zwick HTM-5020液压伺服高速试验机的双轴拉伸加载装置

    Figure  2.  Biaxial tensile loading device based on Zwick HTM-5020 hydraulic servo high speed machine

    图  3  双轴拉伸加载装置的四分之一对称有限元计算模型

    Figure  3.  The quarter finite element calculation model for the biaxial tensile loading device

    图  4  不同锥角条件下加载力臂速度时程曲线

    Figure  4.  Time histories of velocity of the loading force arm at different conical angles

    图  5  不同锥角条件下接触单元应力时程曲线

    Figure  5.  Time histories of stress of contact elements at different conical angles

    图  6  45°锥角下加载力臂上最大单元应力时程曲线

    Figure  6.  Time history of the maximum element stress of the loading force arm at the conical angle of 45°

    图  7  不同锥角条件下速度和接触应力的拟合曲线

    Figure  7.  Fitted curves for velocity and contact stress at different conical angles

    图  8  十字形试样几何尺寸

    Figure  8.  Geometry sizes of cruciform sample

    图  9  不同狭缝条数条件下应力集中系数和狭缝区最大单元应力

    Figure  9.  Stress concentration factor of gauge section and maximum element stress of slit under different slit numbers

    图  10  不同边缘长度条件下应力集中系数和狭缝区最大单元应

    Figure  10.  Stress concentration factor of gauge section and maximum element stress of slit under different lengths of slit edge

    图  11  不同标距段厚度条件下应力集中系数和狭缝区最大单元应力

    Figure  11.  Stress concentration factor of gauge section and maximum element stress of slit under different thicknesses of gauge section

    图  12  优化前和优化后十字形试样的等效应力分布云图

    Figure  12.  Diagrams of equivalent stress distribution of the cruciform sample before and after optimization

    图  13  双轴拉伸实验测试技术示意图

    Figure  13.  Schematic diagram of biaxial tensile test technology

    图  14  标距段喷涂散斑的试样

    Figure  14.  Cruciform sample with speckles pattern on gauge section

    图  15  喷涂散斑的铝合金单轴试样

    Figure  15.  Aluminum alloy specimen with speckles pattern

    图  16  不同实验技术测得铝合金单轴应力应变实验数据对比

    Figure  16.  Comparison of stress-strain curves of aluminum alloy specimens by different test techniques

    图  17  同一方向连接杆上实测的应力时程曲线

    Figure  17.  Evolution of stress profiles measured on the connecting rod along the same direction

    图  18  双轴拉伸加载装置同步性验证的激光干涉测试系统布置

    Figure  18.  Schematic diagram of the laser interference system for verifying synchronism of the biaxial tensile loading device

    图  19  相互垂直两个方向实测的位移和速度时程曲线对比

    Figure  19.  Comparison of displacement and velocity curves measured along two directions perpendicular to each other

    图  20  不同应变率下4个连接杆上应变片实测的力时程曲线

    Figure  20.  Evolution of forces measured by strain gauges on four clamping guide rods at different strain rates

    图  21  不同应变率下DIC实测的标距段平均应变时程曲线

    Figure  21.  Average strain measured by the DIC method as a function of time at different strain rates

    图  22  不同应变率下铝合金双轴拉伸应力应变曲线

    Figure  22.  Stress-strain curves of aluminum alloy at different strain rates under biaxial tensile loading

    图  23  不同应变率下铝合金双轴和单轴等效应力应变曲线对比

    Figure  23.  Comparison of biaxial and uniaxial equivalent stress-equivalent strain curves of aluminum alloy at different strain rates

    表  1  优化后十字试件的最佳尺寸参数

    Table  1.   The parameters of cruciform samples after optimizing

    L/mmMT/mm
    1.530.45
    下载: 导出CSV
  • [1] MA R, LU Y, WANG L, et al. Influence of rolling route on microstructure and mechanical properties of AZ31 magnesium alloy during asymmetric reduction rolling [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(5): 902–911. DOI: 10.1016/S1003-6326(18)64724-7.
    [2] XIAO R, LI X X, LANG L H, et al. Biaxial tensile testing of cruciform slim superalloy at elevated temperatures [J]. Materials & Design, 2016, 94: 286–294. DOI: 10.1016/j.matdes.2016.01.045.
    [3] 陈振, 方国东, 谢军波, 等. 三维轴编 C/C 复合材料双向拉伸实验研究 [J]. 固体火箭技术, 2015, 38(2): 267–272. DOI: 10.7673/j.issn.1006-2793.2015.02.021.

    CHEN Z, FANG G D, XIE J B, et al. Experiment investigation on biaxial tensile strength of 3D in-plane braided C/C composites [J]. Journal of Solid Rocket Technology, 2015, 38(2): 267–272. DOI: 10.7673/j.issn.1006-2793.2015.02.021.
    [4] 吴志凯, 江五贵, 郑隆. 界面对双轴纤维增强复合材料力学性能的影响 [J]. 复合材料学报, 2017, 34(1): 217–223. DOI: 10.13801/j.cnki.fhclxb.20160322.004.

    WU Z K, JIANG W G, ZHENG L. Interfacial effect on mechanical behaviors of bidirectional-fiber-reinforced composites [J]. Acta Materiae Compositae Sinica, 2017, 34(1): 217–223. DOI: 10.13801/j.cnki.fhclxb.20160322.004.
    [5] PAK S, PARK S, SONG Y S, et al. Micromechanical and dynamic mechanical analyses for characterizing improved interfacial strength of maleic anhydride compatibilized basalt fiber/polypropylene composites [J]. Composite Structures, 2018, 193: 73–79. DOI: 10.1016/j.compstruct.2018.03. 020.
    [6] 万敏, 周贤宾. 复杂加载路径下板料屈服强化与成形极限的研究进展 [J]. 塑性工程学报, 2000, 7(2): 35–39. DOI: 10.3969/j.issn.1007-2012.2000.02.010.

    WAN M, ZHOU X B. Research progress on the yielding hardening and forming limit of sheet metals under complex loading paths [J]. Journal of Plasticity Engineering, 2000, 7(2): 35–39. DOI: 10.3969/j.issn.1007-2012.2000.02.010.
    [7] AN Y G, VEGTER H, ELLIOTT L. A novel and simple method for the measurement of the plane strain work hardening [J]. Journal of Materials Processing Technology., 2004, 155-156: 1616–1622. DOI: 10.1016/j.jmatprotec.2004.04.344.
    [8] 任家陶, 陈积光, 李冈陵. 双轴拉伸试验研究 [J]. 湘潭大学自然科学学报, 1998, 20(2): 92–96. DOI: CNKI:SUN:XYDZ.0.1998-02-024.

    REN J T, CHEN J G, LI G L. Experimental research on biaxial tensile test [J]. Natural Science Journal of Xiangtan University, 1998, 20(2): 92–96. DOI: CNKI:SUN:XYDZ.0.1998-02-024.
    [9] BRUSCHI S, ALTAN T, BANABIC D, et al. Testing and modelling of material behaviour and formability in sheet metal forming [J]. Cirp Annals Manufacturing Technology, 2014, 63(2): 727–749. DOI: 10.1016/j.cirp.2014.05.005.
    [10] KUWABAR T. Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations [J]. International Journal of Plasticity, 2007, 23(3): 385–419. DOI: 10.1016/j.ijplas.2006.06.003.
    [11] LIU W, GUINES D, LEOTOING L, et al. Identification of sheet metal hardening for large strains with an in-plane biaxial tensile test and a dedicated cross specimen [J]. International Journal of Mechanical Sciences, 2015, 101−102: 387–398. DOI: 10.1016/j.ijmecsci.2015.08.022.
    [12] HANNON A, TIERNAN P. A review of planar biaxial tensile test systems for sheet metal [J]. Journal of Materials Processing Technology, 2008, 198(1): 1–13. DOI: 10.1016/j.jmatprotec.2007.10.015.
    [13] MERKLEIN M, BIASUTTI M. Development of a biaxial tensile machine for characterization of sheet metals [J]. Journal of Materials Processing Technology, 2013, 213(6): 939–946. DOI: 10.1016/j.jmatprotec.2012.12.005.
    [14] MAKINDE A, THIBODEAU L, NEALE K W. et al Design of a biaxial extensometer for measuring strains in cruciform specimens [J]. Experimental Mechanics, 1992, 32(2): 132–137. DOI: 10.1007/BF02324724.
    [15] HOFERLIN E, BAEL A V, HOUTTE P V, et al. The design of a biaxial tensile test and its use for the validation of crystallographic yield loci [J]. Modelling & Simulation in Materials Science & Engineering, 2000, 8(4): 423–433. DOI: 10.1088/0965-0393/8/4/302.
    [16] FERRON G, MAKINDE A. Design and development of a biaxial strength testing device [J]. Journal of Testing & Evaluation, 1988, 16(16): 253–256.
    [17] SRINICASAN N, VELMURUGAN R, KUMAR R, et al. Deformation behavior of commercially pure (CP) titanium under equi-biaxial tension [J]. Materials Science & Engineering A, 2016, 674: 540–551. DOI: 10.1016/j.msea.2016.08.018.
    [18] NIKHARE C P. Numerical analysis on the effect of thickness on biaxial tension limits0 [J]. Materials Today: Proceedings, 2018, 5(1): 37–43. DOI: 10.1016/j.matpr.2017.11.050.
    [19] KARADOGAN C, TAMER M E. A novel and simple cruciform specimen without slits on legs yet higher plastic strains in gauge [J]. Procedia Engineering, 2017, 207: 1922–1927. DOI: 10.1016/j.proeng.2017.10.962.
    [20] 王犇. 复合材料的双轴试验研究 [J]. 科技创新导报, 2018, 15(11): 19–21. DOI: 10.16660/j.cnki.1674-098X.2018.11.019.

    WANG B. Research on biaxial test of composite materials [J]. Science and Technology Innovation Herald, 2018, 15(11): 19–21. DOI: 10.16660/j.cnki.1674-098X.2018.11.019.
    [21] 李玉龙, 金康华, 刘琛琳, 等. 一种动态双轴双向拉伸加载装置及实验方法: CN 20181012019. X [P]. 2018-07-31.

    LI Y L, JIN K H, LIU C L, et al. Dynamic biaxial bidirectional stretching loading device and experimental method: CN 20181012019. X [P]. 2018- 07-31.
    [22] 史同亚, 刘东升, 陈伟, 等. 激光选区熔化增材制造GP1不锈钢动态拉伸力学响应与层裂破坏 [J]. 爆炸与冲击, 2019, 39(7): 52–63. DOI: 10.11883/bzycj-2019-0015.

    SHI T Y, LIU D S, CHEN W, et al. Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting [J]. Explosion and Shock Waves, 2019, 39(7): 52–63. DOI: 10.11883/bzycj-2019-0015.
    [23] OGDEN R W. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solid [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Scienses, 1972, 32(1575): 565–584. DOI: 10.1098/rspa.1972.0096.
    [24] 王国权, 刘萌, 姚艳春等. 不同本构模型对橡胶制品有限元法适应性研究 [J]. 力学与实践, 2013, 35(4): 40–47. DOI: 10.6052/1000-0879-13-030.

    WANG G Q, LIU M, YAO Y C, et al. Application of different constitutive models in the nonlinear finite element method for rubber Parts [J]. Mechanics in Engineering, 2013, 35(4): 40–47. DOI: 10.6052/1000-0879-13-030.
    [25] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548. DOI: 10.1115/1.3225617.
    [26] XIAO R. A review of cruciform biaxial tensile testing of sheet metals [J]. Experimental Techniques, 2019, 43(5): 501–520. DOI: 10.1007/s40799-018-00297-6.
    [27] 蔡登安, 周光明, 曹然, 等. 双轴载荷下复合材料十字型试样几何形状对中心测试区系数的影响 [J]. 复合材料学报, 2015, 32(4): 1138–1144. DOI: 10.13801/j.cnki.fhclxb.20141022.004.

    CAI D A, ZHOU G M, CAO R, et al. Influence of geometry of composite cruciform specimen under biaxial loading on coefficients of central testing zone [J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1138–1144. DOI: 10.13801/j.cnki.fhclxb.20141022.004.
    [28] 张振, 王永刚. 基于激光干涉测试技术的分离式Hopkinson压杆实验测试系统 [J]. 爆炸与冲击, 2018, 38(5): 1165–1171. DOI: 10.11883/bzycj-2017-0116.

    ZHANG Z, WANG Y G. Measurement system for split Hopkinson pressure bar apparatus based on laser interferometry technique [J]. Explosion and Shock Waves, 2018, 38(5): 1165–1171. DOI: 10.11883/bzycj-2017-0116.
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  177
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-07
  • 修回日期:  2020-09-02
  • 网络出版日期:  2021-05-13
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回