• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

耦合火焰自加速传播的氢气云爆炸超压预测

李艳超 毕明树 高伟

高玮. 冲击地压时列建模的进化神经网络方法[J]. 爆炸与冲击, 2004, 24(6): 524-528. doi: 10.11883/1001-1455(2004)06-0524-5
引用本文: 李艳超, 毕明树, 高伟. 耦合火焰自加速传播的氢气云爆炸超压预测[J]. 爆炸与冲击, 2021, 41(7): 072101. doi: 10.11883/bzycj-2020-0140
LI Yanchao, BI Mingshu, GAO Wei. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation[J]. Explosion And Shock Waves, 2021, 41(7): 072101. doi: 10.11883/bzycj-2020-0140
Citation: LI Yanchao, BI Mingshu, GAO Wei. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation[J]. Explosion And Shock Waves, 2021, 41(7): 072101. doi: 10.11883/bzycj-2020-0140

耦合火焰自加速传播的氢气云爆炸超压预测

doi: 10.11883/bzycj-2020-0140
基金项目: 国家自然科学基金(51674059,51874067);中央高校基本科研业务费专项资金(DUT20GJ201)
详细信息
    作者简介:

    李艳超(1989- ),男,博士后,lyc092451@dlut.edu.cn

    通讯作者:

    高 伟(1984- ),男,博士,教授,gaoweidlut@dlut.edu.cn

  • 中图分类号: O383

Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation

  • 摘要: 通过揭示当量比对氢气云爆炸火焰形态、火焰半径和爆炸超压峰值的影响规律,本文拟建立耦合火焰自加速传播的氢气云爆炸超压预测模型。结果表明:氢气云爆炸火焰传播速度由大至小对应的当量比依次是Φ=2.0、Φ=1.0和Φ=0.8。Le<1.0和Le>1.0的氢气云爆炸火焰表面均出现胞格结构,胞格结构的出现必然会增加火焰燃烧表面积,进而出现“火焰自加速”现象。对于特定的当量比,随着压力监测点和点火位置间距的增加,爆炸超压峰值的正值和负值绝对值均单调减小;对于特定的压力监测点,爆炸超压峰值的正值和负值绝对值随当量比的关系存在些许差异;不同当量比和监测点位置的爆炸超压峰值的负值绝对值大都高于正值。耦合火焰自加速传播的氢气云爆炸超压预测模型可成功预测不同压力监测点薄膜破裂前氢气云爆炸超压的发展过程。
  • 图  1  氢气云爆炸实验平台

    Figure  1.  Experimental platform of hydrogen cloud explosion

    图  2  氢气云爆炸典型超压曲线(Φ=2.0)

    Figure  2.  Typical curves of hydrogen cloud explosion overpressure (Φ=2.0)

    图  3  当量比对氢气云爆炸火焰形态的影响规律

    Figure  3.  Effects of equivalence ratio on flame morphology of hydrogen cloud explosion

    图  4  Le<1.0和Le>1.0的氢气云爆炸火焰自加速传播特征

    Figure  4.  Self-accelerating flame propagation of hydrogen cloud explosion of Le<1.0 and Le>1.0

    图  5  当量比对热膨胀比和火焰厚度的影响

    Figure  5.  Effects of equivalence ratio on thermal expansion ratio and flame thickness

    图  6  当量比对氢气云爆炸超压峰值(正值和负值)的影响规律

    Figure  6.  Effects of equivalence ratio on maximum explosion overpressure (positive and negative value)

    图  7  火焰形态对氢气云爆炸超压的影响规律(Φ=1.0)

    Figure  7.  Effects of flame morphology on hydrogen cloud explosion overpressure (Φ=1.0)

  • [1] KIM W K, MOGI T, DOBASHI R. Flame acceleration in unconfined hydrogen/air deflagrations using infrared photography [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1501–1505. DOI: 10.1016/j.jlp.2013.09.009.
    [2] KIM W K, MOGI T, KUWANA K, et al. Prediction model for self-similar propagation and blast wave generation of premixed flames [J]. International Journal of Hydrogen Energy, 2015, 40(34): 11087–11092. DOI: 10.1016/j.ijhydene.2015.06.123.
    [3] WU F J, JOMAAS G, LAW C K. An experimental investigation on self-acceleration of cellular spherical flames [J]. Proceedings of the Combustion Institute, 2013, 34(1): 937–945. DOI: 10.1016/j.proci.2012.05.068.
    [4] CAI X, WANG J, BIAN Z, et al. On transition to self-similar acceleration of spherically expanding flames with cellular instabilities [J]. Combustion and Flame, 2020, 215(5): 364–375. DOI: 10.1016/j.combustflame.2020.02.001.
    [5] DESHAIES B, LEYER J C. Flow field induced by unconfined spherical accelerating flames [J]. Combustion and Flame, 1981, 40: 141–153. DOI: 10.1016/0010-2180(81)90119-X.
    [6] PU L, SHAO X, LI Q, et al. A simple and effective approach for evaluating unconfined hydrogen/air cloud explosions [J]. International Journal of Hydrogen Energy, 2018, 43(21): 10193–10204. DOI: 10.1016/j.ijhydene.2018.04.041.
    [7] MOLKOV V V, MAKAROV D V, SCHNEIDER H. Hydrogen-air deflagration in open atmosphere: Large eddy simulation analysis of experimental data [J]. International Journal of Hydrogen Energy, 2007, 32(13): 2198–2205. DOI: 10.1016/j.ijhydene.2007.04.021.
    [8] TOLIAS I C, VENETSANOS A G, MARKATOS N, et al. CFD evaluation against a large scale unconfined hydrogen deflagration [J]. International Journal of Hydrogen Energy, 2017, 42(11): 7731–7739. DOI: 10.1016/j.ijhydene.2016.07.052.
    [9] THOMAS A, WILLIAMS G T. Flame noise: sound emission from spark-ignited bubbles of combustible gas [J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1966, 294: 449–466. DOI: 10.1098/rspa.1966.0218.
    [10] LEYER J C, DESBORDES D, CLOUD J P S, et al. Unconfined deflagrative explosion without turbulence: experiment and model [J]. Journal of Hazardous Materials, 1993, 34(2): 123–150. DOI: 10.1016/0304-3894(93)85002-V.
    [11] LAPALME D, LEMAIRE R, SEERS P. Assessment of the method for calculating the Lewis number of H2/CO/CH4 mixtures and comparison with experimental results [J]. International Journal of Hydrogen Energy, 2017, 42(12): 8314–8328. DOI: 10.1016/j.ijhydene.2017.01.099.
    [12] SUN Z, LIU F, BAO X, et al. Research on cellular instabilities in outwardly propagating spherical hydrogen-air flames [J]. International Journal of Hydrogen Energy, 2012, 37(9): 7889–7899. DOI: 10.1016/j.ijhydene.2012.02.011.
    [13] LI Y, BI M, ZHANG S, et al. Dynamic couplings of hydrogen/air flame morphology and explosion pressure evolution in the spherical chamber [J]. International Journal of Hydrogen Energy, 2018, 43(4): 2503–2513. DOI: 10.1016/j.ijhydene.2017.12.044.
    [14] MUKAIYAMA K, SHIBAYAMA S, KUWANA K. Fractal structures of hydrodynamically unstable and diffusive-thermally unstable flames [J]. Combustion and Flame, 2013, 160(11): 2471–2475. DOI: 10.1016/j.combustflame.2013.05.017.
    [15] GOSTINTSEV Y A, ISTRATOV A G, SHULENIN Y V. Self-similar propagation of a free turbulent flame in mixed gas mixture [J]. Combustion, Explosion, and Shock Waves, 1988, 24(5): 563–569. DOI: 10.1007/BF00755496.
  • 期刊类型引用(12)

    1. 郑凯,任佳乐,宋晨,贾千航,邢志祥. 泡沫铜对密闭管道内合成气爆炸特性影响的实验研究. 爆炸与冲击. 2024(01): 28-38 . 本站查看
    2. 卓萍,张网,张良,储玉喜,陈晔,张晋,王玥,李紫婷,陈红光. 新能源火灾防控技术研究进展. 消防科学与技术. 2024(05): 578-589 . 百度学术
    3. 关文玲,李莫凡,董呈杰,任常兴. 开敞空间氢气爆炸特性数值模拟研究. 消防科学与技术. 2024(07): 946-951 . 百度学术
    4. 张炜,王成,钱琛庚,徐坤,刘志林,孟繁霖. 基于遗传算法的气体爆炸化学反应简化模型及其应用. 北京理工大学学报. 2024(10): 997-1005 . 百度学术
    5. 陈佳燕,杨君涛,何其泽. 隧道氢能源汽车泄漏非均匀混合爆炸特性研究. 中国安全科学学报. 2024(08): 155-161 . 百度学术
    6. 代书绮,郭文杰,屠越,杨俊杰,韩佳豪. 浓度梯度对工业可燃气云爆炸特性影响. 辽宁化工. 2024(10): 1577-1580 . 百度学术
    7. 杜赛枫,张凯,陈昊,郭进,段在鹏. 破膜压力对氢-空气预混气体燃爆特性的影响. 爆炸与冲击. 2023(02): 159-169 . 本站查看
    8. 殷德山,张英喆,于成龙,赵军,郑瑞臣. 氢氩混合气(5%∶95%)在空气中可爆性实验研究. 中国安全生产科学技术. 2023(04): 142-146 . 百度学术
    9. 刘芳,张峻豪,卢熹,郭策安. 基于DACO-BP的水下聚能装药峰值超压预测. 兵器装备工程学报. 2023(06): 17-24+102 . 百度学术
    10. 袁玉红,黄寅生,谭玉明,储召栋,张扬,李军福,夏煜,程扬帆. 弱约束条件下当量比对氢气爆燃特性的影响. 火工品. 2023(05): 63-68 . 百度学术
    11. 邝辰,刘迪,杨昊,于安峰,党文义. 氢气泄漏后燃爆风险研究现状综述. 安全、健康和环境. 2021(09): 1-5 . 百度学术
    12. 朱传杰,孙豫敏,林柏泉,江丙友. 管道内预混气体爆炸的波形演化特征及超压预测模型. 消防科学与技术. 2021(12): 1707-1711 . 百度学术

    其他类型引用(5)

  • 加载中
图(7)
计量
  • 文章访问数:  618
  • HTML全文浏览量:  345
  • PDF下载量:  88
  • 被引次数: 17
出版历程
  • 收稿日期:  2020-05-07
  • 修回日期:  2020-06-06
  • 网络出版日期:  2021-06-23
  • 刊出日期:  2021-07-05

目录

    /

    返回文章
    返回