耦合火焰自加速传播的氢气云爆炸超压预测

李艳超 毕明树 高伟

李艳超, 毕明树, 高伟. 耦合火焰自加速传播的氢气云爆炸超压预测[J]. 爆炸与冲击, 2021, 41(7): 072101. doi: 10.11883/bzycj-2020-0140
引用本文: 李艳超, 毕明树, 高伟. 耦合火焰自加速传播的氢气云爆炸超压预测[J]. 爆炸与冲击, 2021, 41(7): 072101. doi: 10.11883/bzycj-2020-0140
LI Yanchao, BI Mingshu, GAO Wei. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation[J]. Explosion And Shock Waves, 2021, 41(7): 072101. doi: 10.11883/bzycj-2020-0140
Citation: LI Yanchao, BI Mingshu, GAO Wei. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation[J]. Explosion And Shock Waves, 2021, 41(7): 072101. doi: 10.11883/bzycj-2020-0140

耦合火焰自加速传播的氢气云爆炸超压预测

doi: 10.11883/bzycj-2020-0140
基金项目: 国家自然科学基金(51674059,51874067);中央高校基本科研业务费专项资金(DUT20GJ201)
详细信息
    作者简介:

    李艳超(1989- ),男,博士后,lyc092451@dlut.edu.cn

    通讯作者:

    高 伟(1984- ),男,博士,教授,gaoweidlut@dlut.edu.cn

  • 中图分类号: O383

Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation

  • 摘要: 通过揭示当量比对氢气云爆炸火焰形态、火焰半径和爆炸超压峰值的影响规律,本文拟建立耦合火焰自加速传播的氢气云爆炸超压预测模型。结果表明:氢气云爆炸火焰传播速度由大至小对应的当量比依次是Φ=2.0、Φ=1.0和Φ=0.8。Le<1.0和Le>1.0的氢气云爆炸火焰表面均出现胞格结构,胞格结构的出现必然会增加火焰燃烧表面积,进而出现“火焰自加速”现象。对于特定的当量比,随着压力监测点和点火位置间距的增加,爆炸超压峰值的正值和负值绝对值均单调减小;对于特定的压力监测点,爆炸超压峰值的正值和负值绝对值随当量比的关系存在些许差异;不同当量比和监测点位置的爆炸超压峰值的负值绝对值大都高于正值。耦合火焰自加速传播的氢气云爆炸超压预测模型可成功预测不同压力监测点薄膜破裂前氢气云爆炸超压的发展过程。
  • 图  1  氢气云爆炸实验平台

    Figure  1.  Experimental platform of hydrogen cloud explosion

    图  2  氢气云爆炸典型超压曲线(Φ=2.0)

    Figure  2.  Typical curves of hydrogen cloud explosion overpressure (Φ=2.0)

    图  3  当量比对氢气云爆炸火焰形态的影响规律

    Figure  3.  Effects of equivalence ratio on flame morphology of hydrogen cloud explosion

    图  4  Le<1.0和Le>1.0的氢气云爆炸火焰自加速传播特征

    Figure  4.  Self-accelerating flame propagation of hydrogen cloud explosion of Le<1.0 and Le>1.0

    图  5  当量比对热膨胀比和火焰厚度的影响

    Figure  5.  Effects of equivalence ratio on thermal expansion ratio and flame thickness

    图  6  当量比对氢气云爆炸超压峰值(正值和负值)的影响规律

    Figure  6.  Effects of equivalence ratio on maximum explosion overpressure (positive and negative value)

    图  7  火焰形态对氢气云爆炸超压的影响规律(Φ=1.0)

    Figure  7.  Effects of flame morphology on hydrogen cloud explosion overpressure (Φ=1.0)

  • [1] KIM W K, MOGI T, DOBASHI R. Flame acceleration in unconfined hydrogen/air deflagrations using infrared photography [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1501–1505. DOI: 10.1016/j.jlp.2013.09.009.
    [2] KIM W K, MOGI T, KUWANA K, et al. Prediction model for self-similar propagation and blast wave generation of premixed flames [J]. International Journal of Hydrogen Energy, 2015, 40(34): 11087–11092. DOI: 10.1016/j.ijhydene.2015.06.123.
    [3] WU F J, JOMAAS G, LAW C K. An experimental investigation on self-acceleration of cellular spherical flames [J]. Proceedings of the Combustion Institute, 2013, 34(1): 937–945. DOI: 10.1016/j.proci.2012.05.068.
    [4] CAI X, WANG J, BIAN Z, et al. On transition to self-similar acceleration of spherically expanding flames with cellular instabilities [J]. Combustion and Flame, 2020, 215(5): 364–375. DOI: 10.1016/j.combustflame.2020.02.001.
    [5] DESHAIES B, LEYER J C. Flow field induced by unconfined spherical accelerating flames [J]. Combustion and Flame, 1981, 40: 141–153. DOI: 10.1016/0010-2180(81)90119-X.
    [6] PU L, SHAO X, LI Q, et al. A simple and effective approach for evaluating unconfined hydrogen/air cloud explosions [J]. International Journal of Hydrogen Energy, 2018, 43(21): 10193–10204. DOI: 10.1016/j.ijhydene.2018.04.041.
    [7] MOLKOV V V, MAKAROV D V, SCHNEIDER H. Hydrogen-air deflagration in open atmosphere: Large eddy simulation analysis of experimental data [J]. International Journal of Hydrogen Energy, 2007, 32(13): 2198–2205. DOI: 10.1016/j.ijhydene.2007.04.021.
    [8] TOLIAS I C, VENETSANOS A G, MARKATOS N, et al. CFD evaluation against a large scale unconfined hydrogen deflagration [J]. International Journal of Hydrogen Energy, 2017, 42(11): 7731–7739. DOI: 10.1016/j.ijhydene.2016.07.052.
    [9] THOMAS A, WILLIAMS G T. Flame noise: sound emission from spark-ignited bubbles of combustible gas [J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1966, 294: 449–466. DOI: 10.1098/rspa.1966.0218.
    [10] LEYER J C, DESBORDES D, CLOUD J P S, et al. Unconfined deflagrative explosion without turbulence: experiment and model [J]. Journal of Hazardous Materials, 1993, 34(2): 123–150. DOI: 10.1016/0304-3894(93)85002-V.
    [11] LAPALME D, LEMAIRE R, SEERS P. Assessment of the method for calculating the Lewis number of H2/CO/CH4 mixtures and comparison with experimental results [J]. International Journal of Hydrogen Energy, 2017, 42(12): 8314–8328. DOI: 10.1016/j.ijhydene.2017.01.099.
    [12] SUN Z, LIU F, BAO X, et al. Research on cellular instabilities in outwardly propagating spherical hydrogen-air flames [J]. International Journal of Hydrogen Energy, 2012, 37(9): 7889–7899. DOI: 10.1016/j.ijhydene.2012.02.011.
    [13] LI Y, BI M, ZHANG S, et al. Dynamic couplings of hydrogen/air flame morphology and explosion pressure evolution in the spherical chamber [J]. International Journal of Hydrogen Energy, 2018, 43(4): 2503–2513. DOI: 10.1016/j.ijhydene.2017.12.044.
    [14] MUKAIYAMA K, SHIBAYAMA S, KUWANA K. Fractal structures of hydrodynamically unstable and diffusive-thermally unstable flames [J]. Combustion and Flame, 2013, 160(11): 2471–2475. DOI: 10.1016/j.combustflame.2013.05.017.
    [15] GOSTINTSEV Y A, ISTRATOV A G, SHULENIN Y V. Self-similar propagation of a free turbulent flame in mixed gas mixture [J]. Combustion, Explosion, and Shock Waves, 1988, 24(5): 563–569. DOI: 10.1007/BF00755496.
  • 加载中
图(7)
计量
  • 文章访问数:  569
  • HTML全文浏览量:  318
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-07
  • 修回日期:  2020-06-06
  • 网络出版日期:  2021-06-23
  • 刊出日期:  2021-07-05

目录

    /

    返回文章
    返回