Experimental study on incentive effect of flexible obstacle on methane-air explosion wave
-
摘要: 为研究柔性障碍物对甲烷空气爆炸波的激励效应,采用双向拉伸聚丙烯(biaxially oriented polypropylene, BOPP)薄膜作为柔性障碍物将管道内甲烷空气预混气体与空气隔开,对比障碍物前后火焰、激波变化,分析膜状柔性障碍物激励效应的机理。实验结果表明:这种具有一定承压能力的柔性障碍物对甲烷爆炸波产生的激励效应不可忽视,在膜片破裂前产生多次激波反射过程,可诱导湍流火焰形成,促使膜前爆炸压力提高,膜片破裂后,火焰在伴流作用下传播速度突增,并加速逐渐逼近前驱冲击波,致使膜后爆炸压力大幅提高;激励效应可使膜片前后最大爆炸压力相差5倍,火焰速度相差7倍;另外在膜片位置2.5 m后增设一道膜片,可增强这种激励效应,而增加膜片的实质是使激波火焰相互作用的次数增加。Abstract: In order to study the incentive effect of flexible obstacles on methane-air explosion waves, a biaxially oriented polypropylene ( BOPP) film was used as a flexible obstacle to separate the methane-air premixed gas from the air in the pipeline, the difference of the flame and shock wave before and after they propagated through the obstacle was compared, and the mechanism of the incentive effect of the flexible membrane obstacle was analyzed. The experimental results show that the incentive effect of this flexible obstacle with certain pressure-bearing capacity on the methane explosion wave cannot be ignored. Multiple reflections of shock wave before the rupture of the flexible membrane can result in the formation of turbulent flame, and thus greatly increase the explosion pressure. After the rupture of the flexible membrane, the velocity of the flame increases suddenly under the action of the concomitant flow and approaches the shock wave, resulting in a great increase in the explosion pressure behind the membrane. The experimental data show that the difference in the maximum explosion pressure between the locations before and after the membrane is five times and the corresponding difference of flame velocity is seven times. In addition, it is found that the incentive effect can be enhanced by adding an additional membrane after the original one with a prescribed distance and the essential role of the additional membrane is to increase the interaction numbers between the shock wave and the flame.
-
Key words:
- methane-air explosion /
- flexible obstacle /
- incentive effect /
- shock wave
-
表 1 工况Ⅰ下激波特征参数
Table 1. Characteristic parameters for shock wave under experimental condition Ⅰ
压力传感器 激波到达时刻/ms 波阵面位置/m 超压/kPa 激波传播速度/(m·s−1) 马赫数 P1 66.37 4.50 42.70 396.67 1.12 P2 74.79 7.84 43.25 P3 197.21 8.95 74.43 424.94
414.59
406.861.23
1.23
1.18P4 205.07 12.29 70.59 P5 211.10 14.79 53.07 P6 215.18 16.45 49.32 表 2 工况Ⅰ下的火焰特征参数
Table 2. Characteristic parameters for flame under experimental condition Ⅰ
火焰传感器 火焰到达时刻/ms 火焰锋面位置/m 火焰传播速度/(m·s−1) F1 165.11 4.50 64.30
211.03
231.62
358.68
538.96F2 217.05 7.84 F3 222.31 8.95 F4 236.73 12.29 F5 243.70 14.79 F6 246.78 16.45 F7 未出现火焰 表 3 实验工况Ⅰ下激波振荡部分特征参数
Table 3. Characteristic parameters of shock wave oscillation under experimental condition Ⅰ
激波到达传感器P1 方向 激波到达传感器P2 激波传播速度/
(m·s−1)时刻/ms 超压/kPa 时刻/ms 超压/kPa 66.37 (a) 41.055 → 74.79 (a′) 42.151 396.67 87.97 (b) 31.252 ← 78.84 (b′) 32.897 365.83 105.39 (c) 41.538 → 114.27 (c′) 39.477 376.13 128.00 (d) 29.059 ← 118.63 (d′) 33.993 356.46 142.96 (e) 50.991 → 151.59 (e′) 51.539 387.02 165.20 (f) 38.823 ← 155.77 (f′) 41.990 354.19 175.91 (g) 25.231 → 184.69 (g′) 37.462 380.41 表 4 实验工况Ⅱ下的激波特征参数
Table 4. Shock wave characteristic parameters under experimental condition Ⅱ
压力传感器 激波到达时刻/ms 波阵面位置/m 超压/kPa 激波传播速度/(m·s−1) 马赫数 P1 203.01 8.95 78.34 444.44 1.28 P2 204.90 9.79 71.78 P3 230.26 12.29 91.41 448.83
439.15
447.601.30
1.27
1.29P4 235.83 14.79 78.28 P5 239.61 16.45 66.30 P6 247.72 20.08 92.12 表 5 实验工况Ⅱ下的火焰特征参数
Table 5. Flame characteristic parameters under experimental condition Ⅱ
火焰传感器 火焰到达时刻/ms 火焰锋面位置/m 火焰传播速度/(m·s−1) F1 247.39 8.95 223.98
301.20
436.30
568.49F2 250.98 9.79 F3 259.28 12.29 F4 265.01 14.79 F5 267.93 16.45 F6 未出现火焰 -
[1] 林柏泉, 周世宁, 张仁贵. 障碍物对瓦斯爆炸过程中火焰和爆炸波的影响 [J]. 中国矿业大学学报, 1999, 28(2): 104–107. DOI: 10.3321/j.issn: 1000-1964.1999.02.002.LIN B Q, ZHOU S N, ZHANG R G. Influence of barriers on flame transmission and explosion wave in gas explosion [J]. Journal of China University of Mining & Technology, 1999, 28(2): 104–107. DOI: 10.3321/j.issn: 1000-1964.1999.02.002. [2] 何学秋, 杨艺, 王恩元, 等. 障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究 [J]. 煤炭学报, 2004, 29(2): 186–189. DOI: 10.3321/j.issn: 0253-9993.2004.02.014.HE X Q, YANG Y, WANG E Y, et al. Effects of obstacle on premixed flame microstructure and flame propagation in methane/air explosion [J]. Journal of China Coal Society, 2004, 29(2): 186–189. DOI: 10.3321/j.issn: 0253-9993.2004.02.014. [3] 徐景德, 张莉聪, 黎体发, 等. 煤矿瓦斯爆炸事故中矿车激励效应的数值模拟 [J]. 爆炸与冲击, 2012, 32(1): 47–50. DOI: 10.11883/1001-1455(2012)01-0047-04.XU J D, ZHANG L C, LI T F, et al. A numerical simulation of stimulating effect of tramcars during the methane explosion propagation [J]. Explosion and Shock Waves, 2012, 32(1): 47–50. DOI: 10.11883/1001-1455(2012)01-0047-04. [4] 徐景德, 黎体发, 张莉聪, 等. 瓦斯爆炸传播过程中矿车激励效应的实验研究 [J]. 中国安全生产科学技术, 2011, 7(2): 5–8. DOI: 10.3969/j.issn.1673-193X.2011.02.001.XU J D, LI T F, ZHANG L C, et al. Experiment study of inspirit affection by the tramcar during the methane explosion propagation [J]. Journal of Safety Science and Technology, 2011, 7(2): 5–8. DOI: 10.3969/j.issn.1673-193X.2011.02.001. [5] 徐景德. 矿井瓦斯爆炸冲击波传播规律及影响因素的研究[D]. 北京: 中国矿业大学(北京), 2003: 14−19. [6] 景国勋, 吴昱楼, 郭绍帅, 等. 障碍物对瓦斯煤尘爆炸火焰传播规律的影响 [J]. 中国安全生产科学技术, 2019, 15(9): 99–104. DOI: 10.11731/j.issn.1673-193x.2019.09.016.JING G X, WU Y L, GUO S S, et al. Influence of obstacle on flame propagation laws of gas and coal dust explosion [J]. Journal of Safety Science and Technology, 2019, 15(9): 99–104. DOI: 10.11731/j.issn.1673-193x.2019.09.016. [7] 余明高, 纪文涛, 温小萍, 等. 交错障碍物对瓦斯爆炸影响的实验研究 [J]. 中国矿业大学学报, 2013, 42(3): 349–354. DOI: 10.13247/j.cnki.jcumt.2013.03.004.YU M G, JI W T, WEN X P, et al. Experimental study of the influence of staggered obstacles on gas explosion [J]. Journal of China University of Mining and Technology, 2013, 42(3): 349–354. DOI: 10.13247/j.cnki.jcumt.2013.03.004. [8] WANG C, CUI Y Y, MEBARKI A, et al. Effect of a tilted obstacle on the flame propagation of gas explosion in case of low initial pressure [J]. Combustion Science and Technology, 2020. DOI: 10.1080/00102202.2020.1740689. [9] WANG C, MA T B, LU J. Influence of obstacle disturbance in a duct on explosion characteristics of coal gas [J]. Science China Physics, Mechanics and Astronomy, 2010, 53(2): 269–278. DOI: 10.1007/s11433-009-0270-3. [10] MASRI A R, IBRAHIM S S, NEHZAT N, et al. Experimental study of premixed flame propagation over various solid obstructions [J]. Experimental Thermal and Fluid Science, 2000, 21(1−3): 109–116. DOI: 10.1016/S0894-1777(99)00060-6. [11] TEODORCZYK A. Scale effects on hydrogen-air fast deflagrations and detonations in small obstructed channels [J]. Journal of Loss Prevention in the Process Industries, 2007, 21(2): 147–153. DOI: 10.1016/j.jlp.2007.06.017. [12] BAKKE J R, VAN WINGERDEN K, HOORELBEKE P, et al. A study on the effect of trees on gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 878–884. DOI: 10.1016/j.jlp.2010.08.007. [13] 赵衡阳. 气体和粉尘爆炸原理[M]. 北京: 北京理工大学出版社, 1996: 13−14. [14] 归明月, 范宝春, 于陆军, 等. 入射和反射激波与火焰相互作用的实验和数值显示 [J]. 自然科学进展, 2007, 17(6): 831–836. DOI: 10.3321/j.issn: 1002-008X.2007.06.019. [15] 范宝春, 冮强, 董刚, 等. 激波与火焰的相互作用过程 [J]. 爆炸与冲击, 2003, 23(6): 488–492.FAN B C, JIANG Q, DONG G, et al. The time evolution of shock-flame interaction [J]. Explosion and Shock Waves, 2003, 23(6): 488–492. [16] 蒋华. 激波诱导预混火焰界面RM不稳定性的数值研究[D]. 南京: 南京理工大学, 2017: 21−22.JIANG H. Numerical study of RM instability on a perturbed interface of premixed flame induced by shock waves[D]. Nanjing: Nanjing University of Science Technology, 2017: 21−22. [17] CICCARELLI G, JOHANSEN C T, PARRAVANI M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel [J]. Combustion and Flame, 2010, 157(11): 2125–2136. DOI: 10.1016/j.combustflame.2010.05.003. [18] GAMEZO V N, OGAWA T, ORAN E S. Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2463–2471. DOI: 10.1016/j.proci.2006.07.220. [19] 史晓亮. 中尺度瓦斯爆炸试验管道测试系统调试与分析[D]. 廊坊: 华北科技学院, 2016: 24−26.SHI X L. Commissioning and analysis of the test system for the gas explosion shock tube[D]. Langfang: North China Institute of Science and Technology, 2016: 24−26. [20] 赖芳芳. 电火源引爆瓦斯的规律和特征研究[D]. 廊坊: 华北科技学院, 2015: 31−33.LAI F F. Study on the law and characteristics of gas explosion ignited by electric fire source[D]. Langfang: North China Institute of Science and Technology, 2015: 31−33. [21] 陈强. 激波管流动的理论和实验技术[M]. 合肥: 中国科技大学五系, 1979: 59−61. [22] 林柏泉. 煤矿瓦斯爆炸机理及防治技术[M]. 徐州: 中国矿业大学出版社, 2012: 124−126. [23] 何惠琴. 反射激波作用下的Richtmyer-Meshkov不稳定性的相关研究[D]. 合肥: 中国科学技术大学, 2015: 3.HE H Q. Research on the Richtmyer-Meshkov instability under reshock[D]. Hefei: University of Science and Technology of China, 2015: 3.