某9 mm手枪弹侵彻MDF的弹道特性

刘子德 王光华 董方栋 崔斌

刘子德, 王光华, 董方栋, 崔斌. 某9 mm手枪弹侵彻MDF的弹道特性[J]. 爆炸与冲击, 2021, 41(5): 053304. doi: 10.11883/bzycj-2020-0148
引用本文: 刘子德, 王光华, 董方栋, 崔斌. 某9 mm手枪弹侵彻MDF的弹道特性[J]. 爆炸与冲击, 2021, 41(5): 053304. doi: 10.11883/bzycj-2020-0148
LIU Zide, WANG Guanghua, DONG Fangdong, CUI Bin. Ballistic characteristics of a 9 mm pistol bullet penetrating medium density fiberboard[J]. Explosion And Shock Waves, 2021, 41(5): 053304. doi: 10.11883/bzycj-2020-0148
Citation: LIU Zide, WANG Guanghua, DONG Fangdong, CUI Bin. Ballistic characteristics of a 9 mm pistol bullet penetrating medium density fiberboard[J]. Explosion And Shock Waves, 2021, 41(5): 053304. doi: 10.11883/bzycj-2020-0148

某9 mm手枪弹侵彻MDF的弹道特性

doi: 10.11883/bzycj-2020-0148
基金项目: 痕迹科学与技术公安部重点实验室基金(2018FMKFKT06)
详细信息
    作者简介:

    刘子德(1994- ),男,硕士,助理工程师,809189782@qq.com

    通讯作者:

    王光华(1965- ),男,硕士,研究员级高级工程师,wangguanghua@sina.com

  • 中图分类号: O385

Ballistic characteristics of a 9 mm pistol bullet penetrating medium density fiberboard

  • 摘要: 为探究某9 mm手枪弹侵彻木质靶板的弹道特性,以中密度板(medium density fiberboard, MDF)为研究对象进行了弹道侵彻试验,通过减装药和角度可调节靶架获得了不同速度和弹着角下弹头的剩余速度和侵彻深度等关键信息;通过Poncelet阻力模型对试验结果进行了分析,并得出侵彻深度与侵彻速度之间的关系式;建立了手枪弹侵彻MDF的数值计算模型,对不同速度和不同弹着角的弹头偏转行为进行了研究,并得到了临界跳飞角度与着靶速度之间的函数关系。结果表明,弹头正侵彻25 mm厚度的MDF时,能量损失量与入射速度具有线性相关性;弹头侵入MDF时均会产生负方向偏转,弹头速度降低或者弹着角减小均会使负方向偏转角度增大,当弹头低速穿透MDF或者弹着角小于45°时,弹头侵彻MDF过程中会产生较大角度偏转,在射出MDF时出现弹道转正现象。
  • 图  1  密度板损伤区域

    Figure  1.  Damage area in medium density fiberboard

    图  2  剩余速度随入射速度的变化

    Figure  2.  Residual velocity varied with incident velocity

    图  3  能量损耗量随入射速度变化

    Figure  3.  Energy loss varied with incident velocity

    图  4  网格化后的物理模型

    Figure  4.  The physical model after meshing

    图  5  试验和数值模拟的弹道轨迹

    Figure  5.  Tested and numerically simulated ballistic trajectories

    图  6  不同入射速度时偏转角随时间的变化

    Figure  6.  Change of deflection angle with time at different incident velocities

    图  7  入射速度为300 m/s时,剩余速度随着靶角的变化

    Figure  7.  Change of residual velocity with landing angle at the incident velocity of 300 m/s

    图  8  入射速度为300 m/s,不同弹着角时偏转角度随时间变化曲线

    Figure  8.  Change of deflection angle with time at different landing angles in the case of the same incident velocity 300 m/s

    表  1  弹头侵彻中密度纤维板的试验数据

    Table  1.   Tested data of bullet penetrating medium density fiberboard

    试验θ/(°)v1/(m·s−1v2/(m·s−1P1/mmΔE/J试验编号θ/(°)v1/(m·s−1v2/(m·s−1P1/mmΔE/J
    19039534325.00153.511905603.5712.5
    29025018925.00107.112904302.427.5
    39022115425.00100.5136038533125.00153.5
    49021214325.0098.0146021415125.0092.0
    5901779525.0089.0154538432225.00175.1
    6901709425.0080.3164520512225.00108.6
    7901321925.0068.3173037228325.00233.2
    890111013.8049.3183024512125.0060.1
    990 95010.8036.1193020109.720
    1090 9209.3434.1203086000
    下载: 导出CSV

    表  2  弹头以及中密度板的材料参数

    Table  2.   Material parameters for bullet and medium density fiberboard

    结构密度/(kg·m−3弹性模量/GPa泊松比
    弹头壳7920900.35
    铅套11340170.42
    钢芯78002010.30
    中密度板716.70.240.31
    下载: 导出CSV

    表  3  剩余速度试验与数值模拟结果

    Table  3.   Tested and numerically simulated residual velocities

    θ/(°)v1/(m·s−1v2/(m·s−1v3/(m·s−1v2/v1v3/v1误差/%
    302451211230.490.50 1.6
    452051221370.600.6612.3
    602141511630.700.76 7.9
    下载: 导出CSV
  • [1] MATTIJSSEN E J A T, PATER K D H, STOEL R D. Ricochet behavior on glass-critical ricochet angles, ricochet angles, and deflection angles [J]. Journal of Forensic Sciences, 2016, 61(6): 1456–1460. DOI: 10.1111/1556-4029.13201.
    [2] HU S L, SHEN H, WANG S C, et al. Trajectory reconstruction through analysis of trace evidence in bullet-intermediate target interaction by SEM/EDX [J]. Journal of Forensic Sciences, 2009, 54(6): 1349–1352. DOI: 10.1111/j.1556-4029.2009.01158.x.
    [3] WALTERS M, LISCIO E. The accuracy and repeatability of reconstructing single bullet impacts using the 2D ellipse method [J]. Journal of Forensic Sciences, 2020, 65(4): 1120–1127. DOI: 10.1111/1556-4029.14309.
    [4] LISCIO E, LE Q, GURYN H. Accuracy and reproducibility of bullet trajectories in FARO zone 3D [J]. Journal of Forensic Sciences, 2020, 65(1): 214–220. DOI: 10.1111/1556-4029.14144.
    [5] 唐奎, 王金相, 陈兴旺, 等. 夹心弹对半无限钢靶的侵彻特性 [J]. 爆炸与冲击, 2020, 40(5): 053302. DOI: 10.11883/bzycj-2019-0323.

    TANG K, WANG J X, CHEN X W, et al. Penetration characteristics of jacketed rods into semi-infinite steel targets [J]. Explosion and Shock Waves, 2020, 40(5): 053302. DOI: 10.11883/bzycj-2019-0323.
    [6] 张元豪, 程忠庆, 侯海量, 等. 结构间隙对夹芯式复合装甲结构抗侵彻性能的影响 [J]. 爆炸与冲击, 2019, 39(12): 125104. DOI: 10.11883/bzycj-2019-0270.

    ZHANG Y H, CHENG Z Q, HOU H L, et al. Influence of structural interspace on anti-penetration performance of sandwich composite armor system [J]. Explosion and Shock Waves, 2019, 39(12): 125104. DOI: 10.11883/bzycj-2019-0270.
    [7] 包阔, 张先锋, 谈梦婷, 等. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(12): 123102. DOI: 10.11883/bzycj-2018-0462.

    BAO K, ZHANG X F, TAN M T, et al. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet [J]. Explosion and Shock Waves, 2019, 39(12): 123102. DOI: 10.11883/bzycj-2018-0462.
    [8] 周捷, 智小琦, 徐锦波, 等. 小尺寸破片对单兵防护装备的侵彻研究 [J]. 爆炸与冲击, 2019, 39(2): 023304. DOI: 10.11883/bzycj-2018-0023.

    ZHOU J, ZHI X Q, XU J B, et al. Research on penetration of small size fragment to single soldier protection equipment [J]. Explosion and Shock Waves, 2019, 39(2): 023304. DOI: 10.11883/bzycj-2018-0023.
    [9] 贺琪. 中小口径枪弹侵彻威力模型研究[D]. 南京: 南京理工大学, 2016.
    [10] KERKHOFF W, ALBERINK I, MATTIJSSEN E J A T. An empirical study on the relation between the critical angle for bullet ricochet and the properties of wood [J]. Journal of Forensic Sciences, 2015, 60(3): 605–610. DOI: 10.1111/1556-4029.12738.
    [11] MATTIJSSEN E J A T, KERKHOFF W, BESTEBREURTJE M E. Bullet trajectory after impact on laminated particle board [J]. Journal of Forensic Sciences, 2018, 63(5): 1374–1382. DOI: 10.1111/1556-4029.13717.
    [12] KERKHOFF W, ALBERINK I, VAN DER HAM K C J M, et al. Influence of muzzle instability on bullet deflection after perforating laminated particleboards [J]. Journal of Forensic Sciences, 2020, 65(1): 221–224. DOI: 10.1111/1556-4029.14171.
    [13] MATTIJSSEN E J A T, KERKHOFF W. Bullet trajectory reconstruction-methods, accuracy and precision [J]. Forensic Science International, 2016, 262: 204–211. DOI: 10.1016/j.forsciint.2016.03.039.
    [14] KOENE L, BROEKHUIS F R. Bullet penetration into wooden targets[C]//International Symposium on Ballistic, 2017.
    [15] 韩瑞国, 金永喜, 卢海涛, 等. 步枪弹对带软硬复合防护明胶靶标的侵彻机制研究 [J]. 兵工学报, 2019, 40(10): 1995–2004. DOI: 10.3969/j.issn.1000-1093.2019.10.004.

    HAN R G, JIN Y X, LU H T, et al. Investigation into the penetrating mechanism of rifle bullet against the gelatin target with soft/hard composite armor [J]. Acta Armamentarii, 2019, 40(10): 1995–2004. DOI: 10.3969/j.issn.1000-1093.2019.10.004.
    [16] HUNT J F, ZHANG H J, GUO Z R, et al. Cantilever beam static and dynamic response comparison with mid-point bending for thin MDF composite panels [J]. BioResources, 2013, 8(1): 115–129. DOI: 10.15376/biores.8.1.115-129.
    [17] ZHANG H J, HUNT J F, ZHOU L J. Comparison of wood composite properties using cantilever-beam bending [J]. BioResources, 2015, 10(2): 3070–3078. DOI: 10.15376/biores.10.2.3070-3078.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  319
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-14
  • 修回日期:  2020-06-11
  • 网络出版日期:  2021-04-23
  • 刊出日期:  2021-05-05

目录

    /

    返回文章
    返回