Ballistic characteristics of a 9 mm pistol bullet penetrating medium density fiberboard
-
摘要: 为探究某9 mm手枪弹侵彻木质靶板的弹道特性,以中密度板(medium density fiberboard, MDF)为研究对象进行了弹道侵彻试验,通过减装药和角度可调节靶架获得了不同速度和弹着角下弹头的剩余速度和侵彻深度等关键信息;通过Poncelet阻力模型对试验结果进行了分析,并得出侵彻深度与侵彻速度之间的关系式;建立了手枪弹侵彻MDF的数值计算模型,对不同速度和不同弹着角的弹头偏转行为进行了研究,并得到了临界跳飞角度与着靶速度之间的函数关系。结果表明,弹头正侵彻25 mm厚度的MDF时,能量损失量与入射速度具有线性相关性;弹头侵入MDF时均会产生负方向偏转,弹头速度降低或者弹着角减小均会使负方向偏转角度增大,当弹头低速穿透MDF或者弹着角小于45°时,弹头侵彻MDF过程中会产生较大角度偏转,在射出MDF时出现弹道转正现象。Abstract: In order to explore the ballistic characteristics of a 9 mm pistol bullet penetrating wooden target board, a ballistic penetration experiment was carried out by choosing medium density fiberboard (MDF) as the research object. Key information such as the residual velocity and depth of penetration to the bullet at different velocities and impact angles was obtained by reducing the charge and adjusting the angle adjustable target frame. The experiment results were analyzed by the Poncelet resistance model, and the relationship between depth of penetration and penetration velocity was obtained. The numerical calculation model of the pistol bullet penetrating the MDF was established. The model studied the deflection behavior of bullet with different velocity and different impact angles, and the functional relationship between the critical ricochet angle and the target velocity was obtained. The results show that when the bullet penetrates the MDF with the thickness of 25 mm, the energy loss is linearly related to the incident velocity; when the bullet penetrates the MDF, it will deflect in the negative direction, and the reduction of the bullet velocity or the reduction of the impact angle will increase the deflection angle in the negative direction. When the bullet penetrates the MDF at a low velocity or the impact angle is less than 45°, the bullet shows a large deflection angle. When the bullet shoots out of the MDF, the trajectory turns positive.
-
Key words:
- medium density fiberboard /
- pistol bullet /
- ballistic characteristic /
- penetrate /
- deflect
-
表 1 弹头侵彻中密度纤维板的试验数据
Table 1. Tested data of bullet penetrating medium density fiberboard
试验 θ/(°) v1/(m·s−1) v2/(m·s−1) P1/mm ΔE/J 试验编号 θ/(°) v1/(m·s−1) v2/(m·s−1) P1/mm ΔE/J 1 90 395 343 25.00 153.5 11 90 56 0 3.57 12.5 2 90 250 189 25.00 107.1 12 90 43 0 2.42 7.5 3 90 221 154 25.00 100.5 13 60 385 331 25.00 153.5 4 90 212 143 25.00 98.0 14 60 214 151 25.00 92.0 5 90 177 95 25.00 89.0 15 45 384 322 25.00 175.1 6 90 170 94 25.00 80.3 16 45 205 122 25.00 108.6 7 90 132 19 25.00 68.3 17 30 372 283 25.00 233.2 8 90 111 0 13.80 49.3 18 30 245 121 25.00 60.1 9 90 95 0 10.80 36.1 19 30 201 0 9.72 0 10 90 92 0 9.34 34.1 20 30 86 0 0 0 表 2 弹头以及中密度板的材料参数
Table 2. Material parameters for bullet and medium density fiberboard
结构 密度/(kg·m−3) 弹性模量/GPa 泊松比 弹头壳 7920 90 0.35 铅套 11340 17 0.42 钢芯 7800 201 0.30 中密度板 716.7 0.24 0.31 表 3 剩余速度试验与数值模拟结果
Table 3. Tested and numerically simulated residual velocities
θ/(°) v1/(m·s−1) v2/(m·s−1) v3/(m·s−1) v2/v1 v3/v1 误差/% 30 245 121 123 0.49 0.50 1.6 45 205 122 137 0.60 0.66 12.3 60 214 151 163 0.70 0.76 7.9 -
[1] MATTIJSSEN E J A T, PATER K D H, STOEL R D. Ricochet behavior on glass-critical ricochet angles, ricochet angles, and deflection angles [J]. Journal of Forensic Sciences, 2016, 61(6): 1456–1460. DOI: 10.1111/1556-4029.13201. [2] HU S L, SHEN H, WANG S C, et al. Trajectory reconstruction through analysis of trace evidence in bullet-intermediate target interaction by SEM/EDX [J]. Journal of Forensic Sciences, 2009, 54(6): 1349–1352. DOI: 10.1111/j.1556-4029.2009.01158.x. [3] WALTERS M, LISCIO E. The accuracy and repeatability of reconstructing single bullet impacts using the 2D ellipse method [J]. Journal of Forensic Sciences, 2020, 65(4): 1120–1127. DOI: 10.1111/1556-4029.14309. [4] LISCIO E, LE Q, GURYN H. Accuracy and reproducibility of bullet trajectories in FARO zone 3D [J]. Journal of Forensic Sciences, 2020, 65(1): 214–220. DOI: 10.1111/1556-4029.14144. [5] 唐奎, 王金相, 陈兴旺, 等. 夹心弹对半无限钢靶的侵彻特性 [J]. 爆炸与冲击, 2020, 40(5): 053302. DOI: 10.11883/bzycj-2019-0323.TANG K, WANG J X, CHEN X W, et al. Penetration characteristics of jacketed rods into semi-infinite steel targets [J]. Explosion and Shock Waves, 2020, 40(5): 053302. DOI: 10.11883/bzycj-2019-0323. [6] 张元豪, 程忠庆, 侯海量, 等. 结构间隙对夹芯式复合装甲结构抗侵彻性能的影响 [J]. 爆炸与冲击, 2019, 39(12): 125104. DOI: 10.11883/bzycj-2019-0270.ZHANG Y H, CHENG Z Q, HOU H L, et al. Influence of structural interspace on anti-penetration performance of sandwich composite armor system [J]. Explosion and Shock Waves, 2019, 39(12): 125104. DOI: 10.11883/bzycj-2019-0270. [7] 包阔, 张先锋, 谈梦婷, 等. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(12): 123102. DOI: 10.11883/bzycj-2018-0462.BAO K, ZHANG X F, TAN M T, et al. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet [J]. Explosion and Shock Waves, 2019, 39(12): 123102. DOI: 10.11883/bzycj-2018-0462. [8] 周捷, 智小琦, 徐锦波, 等. 小尺寸破片对单兵防护装备的侵彻研究 [J]. 爆炸与冲击, 2019, 39(2): 023304. DOI: 10.11883/bzycj-2018-0023.ZHOU J, ZHI X Q, XU J B, et al. Research on penetration of small size fragment to single soldier protection equipment [J]. Explosion and Shock Waves, 2019, 39(2): 023304. DOI: 10.11883/bzycj-2018-0023. [9] 贺琪. 中小口径枪弹侵彻威力模型研究[D]. 南京: 南京理工大学, 2016. [10] KERKHOFF W, ALBERINK I, MATTIJSSEN E J A T. An empirical study on the relation between the critical angle for bullet ricochet and the properties of wood [J]. Journal of Forensic Sciences, 2015, 60(3): 605–610. DOI: 10.1111/1556-4029.12738. [11] MATTIJSSEN E J A T, KERKHOFF W, BESTEBREURTJE M E. Bullet trajectory after impact on laminated particle board [J]. Journal of Forensic Sciences, 2018, 63(5): 1374–1382. DOI: 10.1111/1556-4029.13717. [12] KERKHOFF W, ALBERINK I, VAN DER HAM K C J M, et al. Influence of muzzle instability on bullet deflection after perforating laminated particleboards [J]. Journal of Forensic Sciences, 2020, 65(1): 221–224. DOI: 10.1111/1556-4029.14171. [13] MATTIJSSEN E J A T, KERKHOFF W. Bullet trajectory reconstruction-methods, accuracy and precision [J]. Forensic Science International, 2016, 262: 204–211. DOI: 10.1016/j.forsciint.2016.03.039. [14] KOENE L, BROEKHUIS F R. Bullet penetration into wooden targets[C]//International Symposium on Ballistic, 2017. [15] 韩瑞国, 金永喜, 卢海涛, 等. 步枪弹对带软硬复合防护明胶靶标的侵彻机制研究 [J]. 兵工学报, 2019, 40(10): 1995–2004. DOI: 10.3969/j.issn.1000-1093.2019.10.004.HAN R G, JIN Y X, LU H T, et al. Investigation into the penetrating mechanism of rifle bullet against the gelatin target with soft/hard composite armor [J]. Acta Armamentarii, 2019, 40(10): 1995–2004. DOI: 10.3969/j.issn.1000-1093.2019.10.004. [16] HUNT J F, ZHANG H J, GUO Z R, et al. Cantilever beam static and dynamic response comparison with mid-point bending for thin MDF composite panels [J]. BioResources, 2013, 8(1): 115–129. DOI: 10.15376/biores.8.1.115-129. [17] ZHANG H J, HUNT J F, ZHOU L J. Comparison of wood composite properties using cantilever-beam bending [J]. BioResources, 2015, 10(2): 3070–3078. DOI: 10.15376/biores.10.2.3070-3078.