基于移动窗口的串联增强型轨道炮发射过程电磁场演化模拟分析

王刚华 谢龙 赵海龙 阚明先 肖波 何勇 宋盛义

王刚华, 谢龙, 赵海龙, 阚明先, 肖波, 何勇, 宋盛义. 基于移动窗口的串联增强型轨道炮发射过程电磁场演化模拟分析[J]. 爆炸与冲击, 2021, 41(6): 064201. doi: 10.11883/bzycj-2020-0156
引用本文: 王刚华, 谢龙, 赵海龙, 阚明先, 肖波, 何勇, 宋盛义. 基于移动窗口的串联增强型轨道炮发射过程电磁场演化模拟分析[J]. 爆炸与冲击, 2021, 41(6): 064201. doi: 10.11883/bzycj-2020-0156
WANG Ganghua, XIE Long, ZHAO Hailong, KAN Mingxian, XIAO Bo, HE Yong, SONG Shengyi. Simulational analysis on electromagnetic field evolution in launching process of a series enhanced electromagnetic railgun based on the moving-window method[J]. Explosion And Shock Waves, 2021, 41(6): 064201. doi: 10.11883/bzycj-2020-0156
Citation: WANG Ganghua, XIE Long, ZHAO Hailong, KAN Mingxian, XIAO Bo, HE Yong, SONG Shengyi. Simulational analysis on electromagnetic field evolution in launching process of a series enhanced electromagnetic railgun based on the moving-window method[J]. Explosion And Shock Waves, 2021, 41(6): 064201. doi: 10.11883/bzycj-2020-0156

基于移动窗口的串联增强型轨道炮发射过程电磁场演化模拟分析

doi: 10.11883/bzycj-2020-0156
详细信息
    作者简介:

    王刚华(1976-  ),男,博士,副研究员,wanggh@caep.cn

  • 中图分类号: O389

Simulational analysis on electromagnetic field evolution in launching process of a series enhanced electromagnetic railgun based on the moving-window method

  • 摘要: 简要介绍了Railgun3D程序的主要控制方程,使用Railgun3D程序对串联增强型轨道炮发射过程进行了模拟,详细分析了一复杂构型的电枢在梯形驱动电流加载外轨道/电枢上电磁场的演化过程,对电流涡结构、电流趋肤效应进行了讨论。计算中观察到了不同于普通单轨的现象,由于增强轨道的存在,驱动电流在增强轨道上产生了较大的磁场,由于电磁感应,在内轨道炮口一端上有显著的磁场和电流分布,感应电流的大小依赖于驱动电流的变化率。计算给出了多个时刻电枢附近电流涡结构的演化过程,并在电流下降段,电枢后表面上电流出现反向,指出该效应可能是导致电枢与轨道接触应力不足、甚至出现电枢转捩的重要因素。通过中心对称面上电流密度云图,模拟结果显示出磁扩散与速度趋肤效应在整个过程中的相互竞争决定了电流的分布形态。
  • 图  1  串联增强型轨道炮的轨道和电枢设计示意图(四分之一模型)

    Figure  1.  Schematic diagram of rail and armature design for a series enhanced railgun (1/4 model)

    图  2  加载电流波形

    Figure  2.  Loading current waveform

    图  3  48 ns时刻磁场与电流密度分布

    Figure  3.  Distributions of magnetic field and current density at 48 ns

    图  4  108 ns时刻磁场与电流密度分布

    Figure  4.  Distributions of magnetic field and current density at 108 ns

    图  5  204 ns时刻磁场与电流密度分布

    Figure  5.  Distributions of magnetic field and current density at 204 ns

    图  6  348 ns时刻磁场与电流密度分布

    Figure  6.  Distributions of magnetic field and current density at 348 ns

    图  7  两个不同时刻的电流密度分布与电流方向

    Figure  7.  Current density distributions and current directions at two different moments

    图  8  348 ns时刻电流密度分布与电流方向

    Figure  8.  Current density distribution and current direction at 348 ns

    图  9  348 ns时刻电流密度分布与洛伦兹力方向

    Figure  9.  Current density distribution and Lorentz force direction at 348 ns

    图  10  4个不同时刻电流密度的二维分布

    Figure  10.  Two-dimensional distributions of current density at four different moments

  • [1] KULKARNI A S, THOMAS M J. Comparison between the performance analysis of passive compulsators with slotted and slotless armature windings driving a railgun [J]. International Journal of Emerging Electric Power Systems, 2019, 20(6): 20190132A. DOI: 10.1515/ijeeps-2019-0132.
    [2] MARSHALL R A, WANG Y. Railguns: their science and technology [M]. Beijing: China Machine Press, 2004.
    [3] KUMAR V P, SWARUP S, RAJPUT S, et al. Design and development of 4-MJ capacitor bank-based pulsed power system for electromagnetic launcher [J]. IEEE Transactions on Plasma Science, 2019, 47(3): 1681–1689. DOI: 10.1109/TPS.2019.2896013.
    [4] MCNAB I R. Electromagnetic launch to space [J]. Journal of the British Interplanetary Society, 2007, 60: 54–62.
    [5] ZHANG H, DAI K R, YIN Q. Ammunition reliability against the harsh environments during the launch of an electromagnetic gun: a review [J]. IEEE Access, 2019, 7: 45322–45339. DOI: 10.1109/ACCESS.2019.2907735.
    [6] PONIAEV S A, REZNIKOV B I, KURAKIN R O, et al. Prospects of use of electromagnetic railgun as plasma thruster for spacecrafts [J]. Acta Astronautica, 2018, 150: 92–96. DOI: 10.1016/j.actaastro.2017.12.035.
    [7] MCNAB I R, CRAWFORD M T, SATAPATHY S S, et al. IAT armature development [J]. IEEE Transactions on Plasma Science, 2011, 39(1): 442–451. DOI: 10.1109/TPS.2010.2082568.
    [8] GUO W, ZHANG T, LI J X, et al. Design and testing a novel armature on railgun [J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1119–1124. DOI: 10.1109/TPS.2015.2393365.
    [9] PROULX G A. Railgun with steel barrel sections and thermal management system [J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1642–1646. DOI: 10.1109/TPS.2015.2411259.
    [10] STONKUS R, RAČKAUSKAS J, SCHNEIDER M, et al. Structural mechanics of railguns with open barrels and elastic supports: the influence of multishot operation [J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1510–1515. DOI: 10.1109/TPS.2014.2387791.
    [11] 王刚华, 谢龙, 王强, 等. 电磁轨道炮电磁力学分析 [J]. 火炮发射与控制学报, 2011(1): 69–71, 76. DOI: 10.3969/j.issn.1673-6524.2011.01.018.

    WANG G H, XIE L, WANG Q, et al. Analysis on electromagnetic mechanics in electromagnetic railgun [J]. Journal of Gun Launch and Control, 2011(1): 69–71, 76. DOI: 10.3969/j.issn.1673-6524.2011.01.018.
    [12] WANG G H, XIE L, HE Y, et al. Moving mesh FE/BE hybrid simulation of electromagnetic field evolution for railgun [J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1424–1428. DOI: 10.1109/TPS.2016.2584981.
    [13] LV Q A, LI Z Y, LEI B, et al. Primary structural design and optimal armature simulation for a practical electromagnetic launcher [J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1403–1409. DOI: 10.1109/TPS.2013.2251679.
    [14] 邢彦昌, 吕庆敖, 雷彬, 等. 多匝串联并列轨道炮U形电枢接触界面熔蚀规律分析 [J]. 兵工学报, 2018, 39(11): 2081–2091. DOI: 10.3969/j.issn.1000-1093.2018.11.001.

    XING Y C, LYU Q A, LEI B, et al. Analysis of melting erosion characteristic on the contact interface between u-shaped armature and rails for multiturn serial-parallel railgun [J]. Acta Armamentarii, 2018, 39(11): 2081–2091. DOI: 10.3969/j.issn.1000-1093.2018.11.001.
    [15] 徐蓉, 袁伟群, 成文凭, 等. 增强型电磁轨道发射器的电磁场仿真分析 [J]. 高电压技术, 2014, 40(4): 1065–1070. DOI: 10.13336/j.1003-6520.hve.2014.04.015.

    XU R, YUAN W Q, CHENG W P, et al. Simulation and analysis of electromagnetic field for augmented railgun [J]. High Voltage Engineering, 2014, 40(4): 1065–1070. DOI: 10.13336/j.1003-6520.hve.2014.04.015.
    [16] 任先进, 张春. 静止条件下电磁轨道炮膛内磁场环境仿真分析 [J]. 火控雷达技术, 2018, 47(2): 82–84; 90. DOI: 10.3969/j.issn.1008-8652.2018.02.018.

    REN X J, ZHANG C. Simulation analysis of in-bore magnetic field environment of electromagnetic rail-gun at static condition [J]. Fire Control Radar Technology, 2018, 47(2): 82–84; 90. DOI: 10.3969/j.issn.1008-8652.2018.02.018.
    [17] 王志恒, 万敏, 李小将. 轨道炮电枢电动力转捩形成机理与仿真分析 [J]. 系统仿真学报, 2018, 30(3): 1090–1095. DOI: 10.16182/j.issn1004731x.joss.201803040.

    WANG Z H, WAN M, LI X J. Formation mechanism and simulation analysis of railgun armature electromagnetic transition [J]. Journal of System Simulation, 2018, 30(3): 1090–1095. DOI: 10.16182/j.issn1004731x.joss.201803040.
    [18] 饶寿期. 有限元法和边界元法基础[M]. 北京: 北京航空航天大学出版社, 1990.
    [19] 周平, 徐金平. 求解电磁场有限元边界元方程组的有效方法 [J]. 东南大学学报(自然科学版), 2005, 35(3): 343–346. DOI: 10.3321/j.issn:1001-0505.2005.03.005.

    ZHOU P, XU J P. Method for solving linear equations of hybrid finite element-boundary element method for EM problems [J]. Journal of Southeast University (Natural Science Edition), 2005, 35(3): 343–346. DOI: 10.3321/j.issn:1001-0505.2005.03.005.
    [20] 金伟其, 周立伟, 倪国强, 等. 一种计算轴对称磁场的边界元-有限元混合法的研究 [J]. 北京理工大学学报, 1991, 11(4): 37–44.

    JIN W Q, ZHOU L W, NI G Q, et al. A combined boundary element-finite element method for computing the rotational symmetrical magnetic field [J]. Transactions of Beijing Institute of Technology, 1991, 11(4): 37–44.
    [21] LIU J F, XI X L, WAN G B, et al. Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method [J]. IEEE Transactions on Plasma Science, 2011, 39(3): 852–855. DOI: 10.1109/TPS.2010.2098890.
    [22] WANG Z J, CHEN L X, XIA S G, et al. Experiments and analysis of downslope low-voltage transition in C-type solid armature rail gun [J]. IEEE Transactions on Plasma Science, 2020, 48(7): 2601–2607. DOI: 10.1109/TPS.2020.2999396.
  • 加载中
图(10)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  232
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 修回日期:  2020-09-28
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回