基于离散单元法的发射装药挤压破碎模拟实验

张瑞华 芮筱亭 赵宏立 王琼林 靳建伟

张瑞华, 芮筱亭, 赵宏立, 王琼林, 靳建伟. 基于离散单元法的发射装药挤压破碎模拟实验[J]. 爆炸与冲击, 2021, 41(6): 062301. doi: 10.11883/bzycj-2020-0157
引用本文: 张瑞华, 芮筱亭, 赵宏立, 王琼林, 靳建伟. 基于离散单元法的发射装药挤压破碎模拟实验[J]. 爆炸与冲击, 2021, 41(6): 062301. doi: 10.11883/bzycj-2020-0157
ZHANG Ruihua, RUI Xiaoting, ZHAO Hongli, WANG Qionglin, JIN Jianwei. Simulational experiment on compression and fracture of propellant charge based on the discrete element method[J]. Explosion And Shock Waves, 2021, 41(6): 062301. doi: 10.11883/bzycj-2020-0157
Citation: ZHANG Ruihua, RUI Xiaoting, ZHAO Hongli, WANG Qionglin, JIN Jianwei. Simulational experiment on compression and fracture of propellant charge based on the discrete element method[J]. Explosion And Shock Waves, 2021, 41(6): 062301. doi: 10.11883/bzycj-2020-0157

基于离散单元法的发射装药挤压破碎模拟实验

doi: 10.11883/bzycj-2020-0157
详细信息
    作者简介:

    张瑞华(1991- ),女,博士,助理研究员,zhang_njust@163.com

    通讯作者:

    赵宏立(1972- ),男,研究员,webzhl@126.com

  • 中图分类号: O383

Simulational experiment on compression and fracture of propellant charge based on the discrete element method

  • 摘要: 为了揭示发射装药破碎引起的膛炸现象,急需进行相应装药结构下发射装药挤压破碎数值模拟研究。以硝胺花边十九孔发射药为研究对象,基于离散单元法建立了发射装药挤压破碎模拟系统,同时进行了发射装药动态挤压破碎实验,通过数值模拟与实验获得了不同冲击载荷下的破碎发射装药和挤压应力;分别对获得的破碎发射装药进行了密闭爆发器数值模拟和实验。结果表明:模拟与实验获得的发射装药挤压应力时间历程、密闭爆发器压力时间曲线和起始动态活度比的一致性较好,实验验证了发射装药挤压破碎模拟系统的有效性及合理性。该模拟系统具有重大工程应用价值,为高能发射装药冲击破碎过程和发射装药发射安全性研究奠定了基础。
  • 图  1  发射药颗粒替换黏结过程

    Figure  1.  Replacement and forming bond process of propellant particle

    图  2  Hertz-Mindlin无滑动接触模型

    Figure  2.  Hertz-Mindlin non-sliding contact model

    图  3  Hertz-Mindlin黏结接触模型

    Figure  3.  Hertz-Mindlin bonding contact model

    图  4  发射装药离散单元力学模型

    Figure  4.  Discrete element mechanical model of propellant charge

    图  5  上盖板压力时间曲线

    Figure  5.  Pressure-time curve of upper cover plate

    图  6  发射装药动态挤压破碎实验装置及原理图

    Figure  6.  Experiment device and schematic diagram of the dynamic compression and fracture of propellant charge

    图  7  实验发射装药

    Figure  7.  Experiment propellant charge

    图  8  低温下实验获得的破碎发射装药

    Figure  8.  Fracture propellant charge obtained by experiments at low temperature

    图  9  采用离散单元法模型获得的挤压破碎模拟结果

    Figure  9.  Compression and fracture simulation results with the discrete element model

    图  10  采用黏结键模型得到的挤压破碎模拟结果

    Figure  10.  Compression and fracture simulation results with the bond model

    图  11  不同燃烧室压力下模拟与实验挤压应力对比曲线

    Figure  11.  Comparison of compression stress curves between simulation and experiment under different chamber pressures

    图  12  密闭爆发器数值模拟与实验压力时间对比曲线

    Figure  12.  Comparison of simulated and experiment pressure-time curves in the closed bomb

    表  1  数值模拟参数与结果

    Table  1.   Model parameters and simulation results

    序号法向黏结刚度/(GN·m−3切向黏结刚度/(GN·m−3法向临界应力/MPa切向临界应力/MPa最大应力/MPa
    1449.55134.8712036.087.31
    2449.55134.8712537.590.95
    3449.55134.8713039.095.31
    4449.55134.8713540.598.24
    5449.55134.8714042.0102.67
    6449.55134.8715045.0110.14
    下载: 导出CSV

    表  2  实验条件和结果

    Table  2.   Experiment conditions and results

    序号燃烧室最大压力/MPa挤压应力峰值/MPa
    137.46 3.96
    240.4311.06
    344.8115.35
    下载: 导出CSV

    表  3  数值模拟结果

    Table  3.   Simulation results

    序号挤压应力峰值/MPa黏结键连接个数
    1 3.9218 498
    2 9.1415 190
    313.3412 233
    下载: 导出CSV

    表  4  数值模拟与实验起始动态活度比对比

    Table  4.   Comparision of initial dynamic vivacity ratios in simulation and experiment

    序号数值模拟的起始动态活度比实验的起始动态活度比误差/%
    11.1441.1893.78
    21.5701.6283.56
    31.9422.0676.05
    下载: 导出CSV
  • [1] 芮筱亭, 贠来峰, 王国平, 等. 弹药发射安全性导论[M]. 北京: 国防工业出版社, 2009: 1–5.

    RUI X T, YUN L F, WANG G P, et al. Direction to lanch safety of ammunition [M]. Beijing: National Defense Industry Press, 2009: 1–5.
    [2] 芮筱亭, 冯宾宾, 王燕, 等. 发射装药发射安全性评定方法研究 [J]. 兵工学报, 2015, 36(1): 1–11. DOI: 10.3969/j.issn.1000-1093.2015.01.001.

    RUI X T, FENG B B, WANG Y, et al. Research on evaluation method for launch safety of propellant charge [J]. Acta Armamentarii, 2015, 36(1): 1–11. DOI: 10.3969/j.issn.1000-1093.2015.01.001.
    [3] GAZONAS G A, FORD J C. Uniaxial compression testing of M30 and JA2 gun propellant using a statistical design strategy [J]. Experimental Mechanics, 1992, 32(2): 154–162. DOI: 10.1007/BF02324727.
    [4] 陈言坤, 甄建伟, 武慧恩, 等. 粒状发射药动态破碎研究进展 [J]. 爆破器材, 2014, 43(1): 43–48. DOI: 10.3969/j.issn.1001-8352.2014.01.010.

    CHEN Y K, ZHEN J W, WU H E, et al. Research progress of dynamic fracture of granular propellant [J]. Explosive Materials, 2014, 43(1): 43–48. DOI: 10.3969/j.issn.1001-8352.2014.01.010.
    [5] CUNDALL P A. A computer model for simulating progressive, large-scale movements in block rock systems [C] // Symposium of International Society of Rock Mechanics. Nancy, France, 1971.
    [6] JIANG S P, RUI X T, HONG J, et al. Numerical simulation of impact breakage of gun propellant charge [J]. Granular Matter, 2011, 13(5): 611–622. DOI: 10.1007/s10035-011-0276-1.
    [7] 王燕, 芮筱亭, 宋振东, 等. 初始堆积对发射装药底部挤压应力的影响 [J]. 爆炸与冲击, 2014, 34(5): 560–566. DOI: 10.11883/1001-1455(2014)05-0560-07.

    WANG Y, RUI X T, SONG Z D, et al. Effect of original packing on compression stress at the bottom of propellant bed [J]. Explosion and Shock Waves, 2014, 34(5): 560–566. DOI: 10.11883/1001-1455(2014)05-0560-07.
    [8] EDEM tutorial [M]. Edinburgh: DEM Solutions, 2011.
    [9] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. DOI: 10.1016/j.ijrmms.2004.09.011.
    [10] QUIST J. Cone crusher modelling and simulation [D]. Göteborg: Chalmers University of Technology, 2012: 1–45.
    [11] 夏露. 高能材料结构和性能的分子动力学模拟[D]. 苏州: 苏州大学, 2008: 46.

    XIA L. Molecular dynamics simulations of the structures and properties of highly energetic materials [D]. Suzhou: Suzhou University, 2008: 46.
    [12] 徐浩, 芮筱亭, 郁兆华, 等. 发射装药挤压应力与破碎规律研究 [J]. 火炸药学报, 2012, 35(4): 61–68. DOI: 10.3969/j.issn.1007-7812.2012.04.016.

    XU H, RUI X T, YU Z H, et al. Study on extrusion stress and fracture law of propellant charge [J]. Chinese Journal of Explosives and Propellants, 2012, 35(4): 61–68. DOI: 10.3969/j.issn.1007-7812.2012.04.016.
    [13] ZHANG R H, RUI X T, WANG Y, et al. Study on the change of gas generation law caused by fracture of propellant charge [J]. Journal of Energetic Materials, 2018, 36(4): 454–467. DOI: 10.1080/07370652.2018.1486895.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  617
  • HTML全文浏览量:  305
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 修回日期:  2020-09-16
  • 网络出版日期:  2021-04-14
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回