Experimental investigation and numerical prediction on resistance of reactive powder concrete to multiple penetration
-
摘要: 活性粉末混凝土(reactive powder concrete,RPC)具有超高的强度和优异的阻裂性能。为了研究RPC在多次冲击荷载下的损伤规律,采用25 mm口径滑膛炮对直径为600 mm、高600 mm的RPC圆柱形靶体进行了多次侵彻实验,得到了每次侵彻后靶体的破坏数据,并根据实验数据确定了Forrestal经验公式中的相关系数。基于K&C本构模型和现有RPC基本力学性能的实验数据,修正了K&C模型的强度面参数、损伤参数、状态方程参数、损伤演化模型以及应变率效应相关参数,系统地确定了RPC的K&C模型参数。采用LS-DYNA软件中的重启动功能模拟了弹体多次侵彻RPC靶体的破坏结果,模拟结果与实验结果基本一致,验证了模拟方法的有效性。对长2 200 mm、宽2 200 mm、高1 260 mm的RPC靶体抗侵彻实验进行了数值预测,得到了侵彻深度与弹速之间的关系、弹体贯穿靶体时的极限速度以及弹体侵彻过程中的峰值加速度。Abstract: Reactive powder concrete (RPC) has ultra-high strength and excellent crack resistance. To study the damage law of the RPC subjected to multiple impact loads, a 25 mm caliber smoothbore gun was used to penetrate the RPC cylindrical target with the diameter of 600 mm and the height of 600 mm. In addition, the experimental data of the target after each penetration was obtained, and the correlation coefficient in the Forrestal empirical formula was determined. Based on the K&C constitutive model and the existing experimental data of the RPC, the model parameters for the RPC were determined systematically by modifying the strength and surface parameters, damage parameters, equation-of-state parameters, damage evolution model, the strain rate effect. The restart function in the LS-DYNA software was used to simulate the damage results of the projectile repeatedly penetrating the RPC target. The simulation results are basically consistent with the experimental results, and the effectiveness of the simulation method is verified. Finally, the numerical prediction of the penetration resistance experiment of the RPC target with the length of 2 200 mm, the width of 2 200 mm, and the height of 1 260 mm was carried out. The relationship between the penetration depth and the projectile velocity, the minimum velocity of the projectile passing through the target and the peak acceleration during projectile penetration were obtained.
-
表 1 RPC材料配合比
Table 1. Mixture proportions of RPC
kg/m3 材料 胶凝材料 砂 减水剂 水 钢纤维 RPC 1 238 928 17.7 234.3 159 表 2 RPC基本力学性能参数
Table 2. Basic mechanical performance parameters of RPC
材料 fc/MPa ft /MPa E/GPa μ ρ/(g·cm−3) RPC 120 9.27 46.2 0.22 2.44 表 3 靶体多次侵彻实验结果
Table 3. Experimental results of targets subjected to multiple penetrations
侵彻次数 v0/(m·s−1) h/mm S/cm2 H/mm N Wmax/mm 1 511.5 129.1 329.7 59.5 0 0 2 552.5 257.4 344.1 79.8 12 2 3 560.0 290.3 354.8 114.9 13 13 表 4 弹体、钢箍以及钢筋材料模型参数
Table 4. Model parameters of projectile, steel culvert and steel bar material
材料 ρ/(kg·m−3) E/GPa μ σy/MPa 弹体 7 850 210 0.3 1 650 钢箍/钢筋 7 800 210 0.3 300 表 5 损伤演化函数η(λ)
Table 5. Damage evolution function η(λ)
λ η λ η 0 0 4.0×10−6 0.51 2.7×10−5 0.62 6.7×10−4 0.37 6.8×10−5 0.92 1.2×10−3 0.27 8.0×10−5 0.99 2.0×10−3 0.20 1.0×10−4 1.00 5.5×10−3 0.10 1.4×10−4 0.96 1.6×10−2 0 2.6×10−4 0.66 表 6 活性粉末混凝土的K&C模型应变率效应特征点取值
Table 6. K&C model strain rate characteristic points of reactive powder concrete
$\dot \varepsilon/{\rm{s}^{-1} }$ $\psi $ $\dot \varepsilon/{\rm{s}^{-1} }$ $\psi $ $\dot \varepsilon/{\rm{s}^{-1} }$ $\psi $ –30 000 9.97 –10 1.27 –1×10–4 1.07 –4 782 9.97 –3 1.24 –1×10–5 1.03 –1 000 5.41 –1 1.22 0 1.00 –300 3.45 –0.1 1.18 30 1.00 –100 2.29 –0.01 1.14 265 2.94 –25 1.28 –1×10–3 1.11 30 000 2.94 表 7 RPC的K&C模型8号状态方程参数
Table 7. Parameters of No. 8 equation of state in the K&C model of RPC
εV εV1 εV2 εV3 εV4 εV5 εV6 εV7 εV8 εV9 εV10 0 0.0015 0.0043 0.0101 0.0305 0.0513 0.0726 0.0943 0.174 0.208 σV/GPa σV1 σV2 σV3 σV4 σV5 σV6 σV7 σV8 σV9 σV10 0 0.041 0.094 0.292 0.881 1.622 2.511 3.573 8.714 11.579 Kav/GPa Kav1 Kav2 Kav3 Kav4 Kav5 Kav6 Kav7 Kav8 Kav9 Kav10 27.5 27.5 27.885 29.288 34.843 40.425 45.980 50.186 112.915 137.5 -
[1] 任辉启, 穆朝明, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016.REN H Q, MU C M, LIU R C, et al. Penetration effects of precision guided weapons and engineering protection [M]. Beijing: Science Press, 2016. [2] 王振宇, 冯进技, 张殿臣. 国外小型钻地核武器的发展及防护建议 [C] // 中国土木工程学会防护工程分会第五届理事会暨第九次学术会议. 长春: 中国土木工程学会, 2004: 66–69.WANG Z Y, FENG J J, ZHANG D C. Development of foreign small earth-penetrating nuclear weapons and relevant preventing measures [C] // The 5th Council and 9th Academic Conference of Protection Engineering Branch of China Society of Civil Engineering, Changchun: China Civil Engineering Society, 2004: 66–69. [3] DANCYGIER A N, YANKELEVSKY D Z, JAEGERMANN C. Response of high performance concrete plates to impact of non-deforming projectiles [J]. International Journal of Impact Engineering, 2007, 34(11): 1768–1779. DOI: 10.1016/j.ijimpeng.2006.09.094. [4] GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI: 10.1016/j.ijimpeng.2005.08.003. [5] LEPPÄNEN J. Experiments and numerical analyses of blast and fragment impacts on concrete [J]. International Journal of Impact Engineering, 2005, 31(7): 843–860. DOI: 10.1016/j.ijimpeng.2004.04.012. [6] KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effect [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. DOI: 10.1016/0029-5493(76)90015-7. [7] RICHARD P, CHEYREZY M. Composition of reactive powder concretes [J]. Cement and Concrete Research, 1995, 25(7): 1501–1511. DOI: 10.1016/0008-8846(95)00144-2. [8] 张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真 [J]. 工程力学, 2018, 35(7): 167–186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.ZHANG W H, ZHANG Y S, CHEN Z Y. Penetration test and numerical simulation of ultral-high performance concrete with a scaled earth penetrator [J]. Engineering Mechanics, 2018, 35(7): 167–186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237. [9] FARNAM Y, MOHAMMADI S, SHEKARCHI M. Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced cement based composite [J]. International Journal of Impact Engineering, 2010, 37(2): 220–229. DOI: 10.1016/j.ijimpeng.2009.08.006. [10] 赖建中, 朱耀勇, 徐升, 等. 超高性能水泥基复合材料抗多次侵彻性能研究 [J]. 爆炸与冲击, 2013, 33(6): 601–607. DOI: 10.11883/1001-1455(2013)06-0601-07.LAI J Z, ZHU Y Y, XU S, et al. Resistance of ultra-high-performance cementitious composites to multiple impact penetration [J]. Explosion and Shock Waves, 2013, 33(6): 601–607. DOI: 10.11883/1001-1455(2013)06-0601-07. [11] WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041. [12] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C] // The 14th International Symposium on Ballistics. Quebec City: National Defense Research Establishment, Sweden, 1993. [13] RIEDEL W, THOMA K, HIERMAIWE S, et al. Penetration of reinforced concrete by BETA-B-500, numerical analysis using a new macroscopic concrete model for hydrocodes [C] // The 9th International Symposion on the Interaction of the Effects of Munitions with Structures, Berlin Strausberg, 1999. [14] MURRAY Y D. Users manual for LS-DYNA Concrete Material Model 159: FHWA-HRT-05-062 [R]. 2007. [15] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9–10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7. [16] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4. [17] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F. [18] 崔亚男. 卵形头弹体撞击活性粉末混凝土失效特性实验研究[D]. 天津: 中国民航大学, 2019.CUI Y N. Experimental study on the failure characteristics of reactive powder concrete impacted by ogive-nose projectiles [D]. Tianjin: Civil Aviation University of China, 2019. [19] FENG J, GAO X D, LI J Z, et al. Influence of fiber mixture on impact response of ultra-high-performance hybrid fiber reinforced cementitious composite [J]. Composites Part B: Engineering, 2019, 163(1): 487–496. DOI: 10.1016/j.compositesb.2018.12.141. [20] 任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定 [J]. 振动与冲击, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.18.002.REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete [J]. Journal of Vibration and Shock, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.18.002. [21] REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113: 1–14. DOI: 10.1016/j.conbuildmat.2016.02.227. [22] AFSHIN N, MOHAMMAD S, MASOUD M, et al. Behavior of steel fiber-reinforced cementitious mortar and high performance concrete in triaxial loading [J]. ACI Materials Journal, 2015, 112(1): 95–103. DOI: 10.14359/51686837. [23] YU Z R, ZHAO H Z, AN M J, et al. Mechanical properties of reactive powder concrete under triaxial compression [J]. Journal of the China Railway Society, 2017(7): 121–126. DOI: 10.3969/j.issn.1001-8360.2017.07.017. [24] FARNAM Y, MOOSAVI M, SHEKARCHI M, et al. Behaviour of slurry infiltrated fiber concrete (SIFCON) under triaxial compression [J]. Cement and Concrete Research, 2010, 40: 1571–1581. DOI: 10.1016/j.cemconres.2010.06.009. [25] SIRIJARONCHAI K, EL-TAWIL S, PARRA-MONTESINOS G. Behavior of high performance fiber reinforced cement composites under multi-axial compressive loading [J]. Cement and Concrete Composites, 2010, 32: 62–72. DOI: 10.1016/j.cemconcomp.2009.09.003. [26] ZHANG K, ZHAO L Y, TAO N, et al. Experimental investigation and multiscale modeling of reactive powder cement pastes subject to triaxial compressive stresses [J]. Construction and Building Materials, 2019, 224: 242–254. DOI: 10.1016/j.conbuildmat.2019.07.049. [27] POLANCO-LORIA M. Improvements to the HJC concrete model in LS-DYNA: STF24 F01286 [R]. Trondheim, Norway, 2002. [28] 侯正纲, 三轴应力状态下混凝土强度研究[D]. 天津: 河北工业大学, 2006.HOU Z G. Research on concrete strength under triaxial stresses [D]. Tianjin: Hebei University of Technology, 2006. [29] 闫东明, 林皋, 徐平. 三向应力状态下混凝土动态强度和变形特性研究 [J]. 工程力学, 2007, 24(3): 58–64. DOI: 10.3969/j.issn.1000-4750.2007.03.010.YAN D M, LIN G, XU P. Dynamic strength and deformation of concrete in triaxial stress state [J]. Engineering Mechanics, 2007, 24(3): 58–64. DOI: 10.3969/j.issn.1000-4750.2007.03.010. [30] 熊益波, 胡永乐, 徐进, 等. 混凝土Johnson-Holmquist模型极限面参数确定 [J]. 兵工学报, 2010, 31(6): 746–751.XIONG Y B, HU Y L, XU J, et al. Determining failure surface parameters of the Johnson-Holmquist concrete constitutive model [J]. Acta Armamentarii, 2010, 31(6): 746–751. [31] 谢和平, 董毓利, 李世平. 不同围压下混凝土受压弹塑性损伤本构模型的研究 [J]. 煤炭学报, 1996, 21(3): 265–270. DOI: 10.3321/j.issn:0253-9993.1996.03.009.XIE H P, DONGY L, LI S P. Study of a constitutive model of elasto-plastic damage of concrete in axial compression test under different pressures [J]. Journal of China Coal Society, 1996, 21(3): 265–270. DOI: 10.3321/j.issn:0253-9993.1996.03.009. [32] KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016. [33] WEERHIJM J, DOORMAAL J C A M V. Tensile failure of concrete at high loading rates: new test data on strength and fracture energy from instrumented spalling tests [J]. International Journal of Impact Engineering, 2007, 34(3): 609–626. DOI: 10.1016/j.ijimpeng.2006.01.005. [34] MAALEJ M, QUEK S T, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact [J]. Journal of Materials in Civil Engineering, 2005, 17(2): 143–152. DOI: 10.1061/(ASCE)0899-1561(2005)17:2(143). [35] MALVAR L J. Review of static and dynamic properties of steel reinforcing bars [J]. ACI Materials Journal, 1998, 95(5): 609–616. DOI: 10.1016/S0886-7798(98)00088-1. [36] MAO L, BARNETT S, BEGG D, et al. Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading [J]. International Journal of Impact Engineering, 2014, 64: 91–100. DOI: 10.1016/j.ijimpeng.2013.10.003. [37] MAO L, BARNETT S J. Investigation of toughness of ultra high performance fibre reinforced concrete (UHPFRC) beam under impact loading [J]. International Journal of Impact Engineering, 2017, 99: 26–38. DOI: 10.1016/j.ijimpeng.2016.09.014. [38] PARK J K, KIM S W, KIM D J. Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact [J]. Composites Structure, 2017, 162: 313–324. DOI: 10.1016/j.compstruct.2016.12.022. [39] LIN X S. Numerical simulation of blast responses of ultra-high performance fibre reinforced concrete panels with strain-rate effect [J]. Construction and Building Materials, 2018, 176: 371–382. DOI: 10.1016/j.conbuildmat.2018.05.066. [40] MARSH S P. LASL shock Hugoniot data [M]. California: University of California Press, 1980. [41] 高乐. 活性粉末混凝土高压状态方程研究[D]. 广州: 广州大学, 2011.GAO L. Research on high pressure equation of RPC [D]. Guangzhou: Guangzhou University, 2011. [42] 严少华, 钱七虎, 周早生, 等. 高强混凝土及钢纤维高强混凝土高压状态方程的实验研究 [J]. 解放军理工大学学报(自然科学版), 2000, 1(6): 49–53. DOI: 10.3969/j.issn.1009-3443.2000.06.010.YAN S H, QIAN Q H, ZHOU Z S, et al. Experimental study of equation of state for high-strength concrete and high-strength fiber foncrete [J]. Journal of PLA University of Science and Technology, 2000, 1(6): 49–53. DOI: 10.3969/j.issn.1009-3443.2000.06.010.