Experimental study on dynamic response of an anti-ice hull structurewith square groove longitudinals under ice impact
-
摘要: 针对船舶冰区航行受冰体撞击结构损伤问题,以一种涉冰带船肩处船体板架结构为原型,提出了一种方槽型纵骨船舶抗冰结构型式。利用落锤冲击实验测试系统,对抗冰和原型加筋板架在相同冰体撞击工况下的结构动响应进行了实验研究,采用MSC.Dytran程序对板架受冰体撞击过程开展数值模拟,并与实验结果进行对比。结果表明,相同冰体撞击工况下,抗冰板架结构产生的撞击力比原型板架略大,冰体造成的抗冰板架结构最大凹陷深度小于原型板架。从船体外板结构损伤程度及对船体内部构件、设备防护作用的角度考虑,抗冰结构较原型具有一定的抗冰效果。研究成果可为冰区航行船或破冰船的抗冰结构设计提供参考。Abstract: In this work, in order to reduce hull structural damage caused by ice impact, a new type of square groove longitudinal anti-ice structure is used in the shoulder structure of a hull in ice belt. Using a falling weight impact test system, the structural dynamic responses of anti-ice and prototype stiffened plates under the same ice impact case were tested and the impacting processes were simulated by the MSC.Dytran software. The results show that under the same impact conditions, the impact force produced by the anti-ice structure is slightly higher than that by the prototype one, and the maximum depression depth is smaller than that of the prototype one. According to the structural damage degree of the hull shell plates and their protection function to the hull internal components and equipment, the new structure has a certain anti-ice effect compared with the prototype structure. The results of the present study can provide a reference for the design of the anti-ice structures of ice-going ships or icebreakers.
-
Key words:
- square groove longitudinal /
- anti-ice structure /
- ice impact /
- dynamic response
-
表 1 原型纵骨与方槽型纵骨结构参数对比
Table 1. Comparison of structural parameters between two kinds of longitudinals
纵骨类型 尺寸/mm 板厚/mm 横截面积/mm2 质量差/% 原型纵骨 腹板126 腹板7 1232.2 面板 26 面板13.2 方槽型纵骨 方槽边长60 6.85 1233 0.064 9 -
[1] LIU Z H, AMDAHL J, LØSET S. Integrated numerical analysis of an iceberg collision with a foreship structure [J]. Marine Structures, 2011, 24(4): 377–395. DOI: 10.1016/j.marstruc.2011.05.004. [2] INCE S T, KUMAR A, PARK D K, et al. An advanced technology for structural crashworthiness analysis of a ship colliding with an ice-ridge: numerical modelling and experiments [J]. International Journal of Impact Engineering, 2017, 110: 112–122. DOI: 10.1016/j.ijimpeng.2017.02.014. [3] KIM J H, KIM Y, KIM H S, et al. Numerical simulation of ice impacts on ship hulls in broken ice fields [J]. Ocean Engineering, 2019, 182: 211–221. DOI: 10.1016/j.oceaneng.2019.04.040. [4] 张健, 万正权, 陈聪. 船-冰碰撞载荷下球鼻艏结构动态响应研究 [J]. 船舶力学, 2014, 18(1−2): 106–114. DOI: 10.3969/j.issn.1007-7294.2014.h1.014.ZHANG J, WAN Z Q, CHEN C. Research on structure dynamic response of bulbous bow in ship-ice collision load [J]. Journal of Ship Mechanics, 2014, 18(1−2): 106–114. DOI: 10.3969/j.issn.1007-7294.2014.h1.014. [5] 张健, 王甫超, 刘海东, 等. 水介质中船体板架模型与冰体碰撞试验研究 [J]. 船舶力学, 2020, 24(4): 492–500. DOI: 10.3969/j.issn.1007-7294.2020.04.009.ZHANG J, WANG F C, LIU H D, et al. Experimental study on collision of hull plate model and ice in water medium [J]. Journal of Ship Mechanics, 2020, 24(4): 492–500. DOI: 10.3969/j.issn.1007-7294.2020.04.009. [6] Finnish Maritime Administration. Finnish-Swedish ice class rules: Bulletin No. 13/1.10. 2002 [R]. 2002. [7] American Bureau of Shipping. ABS 2 polar waters guide: 2008 guide for building and classing vessels intended for navigation in polar waters [S]. 2008. [8] IACS. Requirements concerning polar class [S]. 2011. [9] 李丹, 杨春萍, 杜兆阳. LNG船舷侧抗冰撞性结构设计 [J]. 船舶物资与市场, 2019(11): 17–19. DOI: 10.19727/j.cnki.cbwzysc.2019.11.001.LI D, YANG C P, DU Z Y. Anti-ice impact side structure design of LNG ship [J]. Marine Equipment/Materials and Marketing, 2019(11): 17–19. DOI: 10.19727/j.cnki.cbwzysc.2019.11.001. [10] 陈聪. 冰撞载荷作用下船体结构抗冲击设计研究[D]. 镇江: 江苏科技大学, 2015: 61−72. 期刊类型引用(19)
1. 张晋红,薛瑞峰,刘迎彬,张艺潇. Ni/Al反应材料聚能粒子流释能特性研究. 兵器材料科学与工程. 2025(01): 1-6 . 百度学术
2. 章猛华,阮文俊,于霜,吕亚男,王占山. 低冲击速率下Al/PTFE冲击点火试验及细观模拟. 南京理工大学学报. 2025(01): 59-66 . 百度学术
3. 吴家祥,李忠举,高振儒,李裕春,赵长啸,刘强. PTFE基活性材料毁伤元冲击靶板毁伤效应及影响因素. 北京理工大学学报. 2023(10): 1016-1025 . 百度学术
4. 汪德武,任柯融,江增荣,赵宏伟,陈荣,郭宝月. 活性材料冲击释能行为研究进展. 爆炸与冲击. 2021(03): 86-102 . 本站查看
5. 凌绪玉,刘福生,汪贻高. 孔隙率对铌硅粉末混合物冲击反应的影响. 高压物理学报. 2020(03): 90-96 . 百度学术
6. 崔岩,彭喜英,李新靓,王利成,孙新军. Ni/Al复合材料在累积叠轧制备过程中的组织演变和力学分析. 材料热处理学报. 2020(06): 1-6 . 百度学术
7. 丁青云,骆心怡,陶杰,廖莎. 原始层厚比对Ni/Al多层含能结构材料放热性能及力学性能的影响. 材料工程. 2020(12): 156-162 . 百度学术
8. 何丽灵,张方举,颜怡霞,谢若泽,徐艾民,周燕良. Ti-6Al-4V弹体破坏模式对冲击反应的影响研究. 爆炸与冲击. 2020(12): 58-69 . 本站查看
9. 何源,何勇,王传婷,潘绪超,焦俊杰,郭磊,杨相礼,李铨. 含电子相影响的多功能含能结构材料冲击压缩理论计算. 爆炸与冲击. 2018(01): 217-223 . 本站查看
10. 杜烨,李强. 含能射流冲击释能试验研究. 振动与冲击. 2018(18): 266-270 . 百度学术
11. 张会华,梁栋,刘桂涛,朱曦光,王志威,陈敏,刘凯,葛文艳,李德林. 烧结工艺对Ni/Al/W含能反应材料性能的影响. 兵器材料科学与工程. 2017(02): 114-117 . 百度学术
12. 张度宝,汪涛,鱼银虎,潘剑锋,王卫. Ni-Al含能结构材料的制备和性能. 稀有金属材料与工程. 2017(11): 3469-3473 . 百度学术
13. 崔乃夫,陈鹏万,周强,周丙丙. 冲击引发Ti-Si活性粉体反应过程研究. 高压物理学报. 2017(04): 478-485 . 百度学术
14. 周杰,何勇,何源,王传婷,杨相礼,季铖. Al/PTFE/W反应材料的准静态压缩性能与冲击释能特性. 含能材料. 2017(11): 903-912 . 百度学术
15. 张度宝,汪涛,鱼银虎,潘剑锋,王卫. Ni-Al含能结构材料冲击释能行为研究. 稀有金属. 2017(01): 40-44 . 百度学术
16. 史安顺,张先锋,乔良,魏胜,张将,何源,何勇. 多功能含能结构材料冲击压缩特性的理论计算. 爆炸与冲击. 2013(02): 148-155 . 本站查看
17. 乔良,张先锋,何勇,史安顺,张将. 颗粒金属材料冲击压缩细观数值模拟. 高压物理学报. 2013(06): 863-871 . 百度学术
18. 乔良,张先锋,何勇,史安顺,张将,张彦国. 颗粒金属材料冲击压缩细观力学仿真模型生成方法. 南京理工大学学报. 2013(02): 219-225 . 百度学术
19. 何源,何勇,张先锋,乔良,赵晓宁,潘绪超. 疏松金属材料冲击温度理论分析. 爆炸与冲击. 2012(02): 143-149 . 本站查看
其他类型引用(40)
-