Dynamic characteristics of electric transmission lines undergone blasting de-icing
-
摘要: 为研究输电线路爆破除冰效果及动态特性,进行了50 m孤立档输电线路爆破除冰模型实验,采用人工覆冰方式,通过引爆预设在输电线下侧的导爆索去除部分线路覆冰,测量了爆破除冰过程中三种输电线档中位移和端部动张力,并将爆破载荷简化为三角波载荷,利用有限元软件ABAQUS对实验工况进行了模拟验证;进一步利用模拟方法研究了爆破除冰量为20%时除冰位置对跳跃幅值和动张力的影响。结果表明:对于雨凇,爆破作用只会引起输电线爆破区域的覆冰脱落;爆破除冰时跳跃幅值和动张力幅值均大于相同位置自然脱冰,而随除冰位置的变化趋势与自然脱冰相似;与导线相比,地线光缆的跳跃幅值受爆破作用影响更显著。Abstract: In order to study the dynamic characteristics of electric transmission lines undergone blasting de-icing and the corresponding de-icing effects, model experiments on the isolated transmission lines with a span of 50 m were carried out. The artificial icing was performed out and the detonating cords preset at the lower sides of the transmission lines were detonated to remove partial ice covers of the transmission lines. The displacements and dynamic tensions of three kinds of transmission lines were measured during blasting de-icing. The blasting load was simplified as a triangular wave load, and the experimental conditions were simulated and verified by the finite element software ABAQUS. Furthermore, the effects of the de-icing positions on the jumping height and dynamic tension were explored when the ice was removed by twenty percent. The results show that for glaze ice, the blasting action can only cause the ice to fall off in the blasting area of the transmission lines. The amplitudes of the jumping and dynamic tension induced by blasting de-icing are greater than those by natural de-icing at the same locations, and their changing trends with de-icing location are similar to those by natural de-icing. Compared with the conductor, the jump amplitudes of the ground wire and the optical cable are more significantly affected by blasting.
-
Key words:
- transmission line /
- blasting de-icing /
- finite element method /
- jumping amplitude /
- dynamic tension
-
表 1 输电线物理参数
Table 1. Physical parameters of transmission lines
输电线 直径/mm 截面积/mm2 线密度/(kg·m−1) 杨氏模量/GPa LGJ-240/30 21.6 275.96 0.9222 73 GJ-50 9.0 49.48 0.4119 185 OPGW-24B1-50 9.6 48.25 0.345 162 表 2 实验工况
Table 2. Conditions of experiment
工况 脱冰区域 1 导线1区域1、2、3同时爆破除冰 2 地线3区域4、5同时爆破除冰 3 光缆4区域6爆破除冰 表 3 覆冰前后输电线档中弧垂及等效覆冰厚度
Table 3. Sag of mid-point and equivalent thickness of transmission line before and after icing
输电线 档中弧垂/m 等效覆冰厚度/mm 覆冰前 覆冰后 导线 1.14 1.15 12.5 地线 0.86 0.91 10.0 光缆 0.66 0.72 10.0 -
[1] 刘春城, 李宏男, 刘佼. 高压输电线路抗冰灾的研究现状与发展趋势 [J]. 自然灾害学报, 2012, 21(1): 155–162. DOI: 10.13577/j.jnd.2012.0123.LIU C C, LI H N, LIU J. Present status and trend of icing disaster resistance of high-voltage transmission lines [J]. Journal of Natural Disasters, 2012, 21(1): 155–162. DOI: 10.13577/j.jnd.2012.0123. [2] 黄新波, 刘家兵, 蔡伟, 等. 电力架空线路覆冰雪的国内外研究现状 [J]. 电网技术, 2008, 32(4): 23–28.HUANG X B, LIU J B, CAI W, et al. Present research situation of icing and snowing of overhead transmission lines in china and foreign countries [J]. Power System Technology, 2008, 32(4): 23–28. [3] 巢亚锋, 岳一石, 王成, 等. 输电线路融冰、除冰技术研究综述 [J]. 高压电器, 2016, 52(11): 1–9, 24. DOI: 10.13296/j.1001-1609.hva.2016.11.001.CHAO Y F, YUE Y S, WANG C, et al. De-icing techniques for ice-covered transmission lines: a review [J]. High Voltage Apparatus, 2016, 52(11): 1–9, 24. DOI: 10.13296/j.1001-1609.hva.2016.11.001. [4] 陈科全, 严波, 吕欣, 等. 四分裂导线机械式除冰装置及可行性研究 [J]. 振动与冲击, 2013, 32(20): 48–54. DOI: 10.13465/j.cnki.jvs.2013.20.036.CHEN K Q, YAN B, LYU X, et al. A mechanical de-icing device for iced quad-bundled conductors and its feasibility [J]. Journal of Vibration and Shock, 2013, 32(20): 48–54. DOI: 10.13465/j.cnki.jvs.2013.20.036. [5] PAUL S, CHANG J. Design of novel electromagnetic energy harvester to power a deicing robot and monitoring sensors for transmission lines [J]. Energy Conversion and Management, 2019, 197: 111868. DOI: 10.1016/j.enconman.2019.111868. [6] 刘智颖, 穆竺, 王加科, 等. 激光除冰光学系统的设计与参数分析 [J]. 光子学报, 2018, 47(8): 0822001. DOI: 10.3788/gzxb20184708.0822001.LIU Z Y, MU Z, WANG J K, et al. Design and parameter analysis of laser deicing optical system [J]. Acta Photonica Sinica, 2018, 47(8): 0822001. DOI: 10.3788/gzxb20184708.0822001. [7] WANG Y B, XU Y M, SU F. Damage accumulation model of ice detach behavior in ultrasonic de-icing technology [J]. Renewable Energy, 2020, 153: 1396–1405. DOI: 10.1016/j.renene.2020.02.069. [8] 宋巍, 谢东升, 黄铁铮, 等. 线性装药爆破去除输电线覆冰研究 [J]. 高压物理学报, 2019, 33(4): 045901. DOI: 10.11858/gywlxb.20180605.SONG W, XIE D S, HUANG T Z, et al. De-icing power line by linear shaped explosive blast [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045901. DOI: 10.11858/gywlxb.20180605. [9] 谢东升, 宋巍, 王玮, 等. 高压输电线路覆冰清除爆破参数研究 [J]. 中北大学学报(自然科学版), 2018, 39(6): 746–751. DOI: 10.3969/j.issn.1673-3193.2018.06.018.XIE D S, SONG W, WANG W, et al. Study on blasting parameters of high voltage transmission line coated by ice [J]. Journal of North University of China (Natural Science Edition), 2018, 39(6): 746–751. DOI: 10.3969/j.issn.1673-3193.2018.06.018. [10] 王璋奇, 齐立忠, 王剑, 等. 架空输电线非同期脱冰跳跃动张力实验研究 [J]. 振动与冲击, 2016, 35(22): 61–65. DOI: 10.13465/j.cnki.jvs.2016.22.010.WANG Z Q, QI L Z, WANG J, et al. Experiments on the dynamic tension of an overhead conductor under the asynchronous ice shedding [J]. Journal of Vibration and Shock, 2016, 35(22): 61–65. DOI: 10.13465/j.cnki.jvs.2016.22.010. [11] 李宏男, 吴育炎. 输电线路覆冰脱落动力效应试验研究 [J]. 土木工程学报, 2019, 52(5): 35–46, 100. DOI: 10.15951/j.tmgcxb.2019.05.004.LI H N, WU Y Y. Experimental study on dynamic responses of transmission lines caused by ice shedding [J]. China Civil Engineering Journal, 2019, 52(5): 35–46, 100. DOI: 10.15951/j.tmgcxb.2019.05.004. [12] 谢献忠, 李丹, 黄伟, 等. 塔线体系脱冰跳跃动力特性实验研究 [J]. 应用力学学报, 2017, 34(5): 855–861. DOI: 10.11776/cjam.34.05.B071.XIE X Z, LI D, HUANG W, et al. Experimental study on dynamical properties of tower-line systems induced by ice-shedding [J]. Chinese Journal of Applied Mechanics, 2017, 34(5): 855–861. DOI: 10.11776/cjam.34.05.B071. [13] YAN B, CHEN K Q, GUO Y M, et al. Numerical simulation study on jump height of iced transmission lines after ice shedding [J]. IEEETransactions on Power Delivery, 2013, 28(1): 216–225. DOI: 10.1109/TPWRD.2012.2219324. [14] 张欢, 李炜, 张亚军, 等. 输电线路档距组合对覆冰导线动态特性的影响分析 [J]. 高电压技术, 2013, 39(3): 755–761. DOI: 10.3969/j.issn.1003-6520.2013.03.036.ZHANG H, LI W, ZHANG Y J, et al. Impact analysis of transmission line span combination on dynamic characteristics of iced conductor [J]. High Voltage Engineering, 2013, 39(3): 755–761. DOI: 10.3969/j.issn.1003-6520.2013.03.036. [15] 杨风利, 杨靖波, 李正, 等. 覆冰输电线路脱冰跳跃及抑制方法研究 [J]. 振动与冲击, 2010, 29(5): 20–25, 30. DOI: 10.3969/j.issn.1000-3835.2010.05.005.YANG F L, YANG J B, LI Z, et al. Ice shedding and vibration suppression of a transmission line system [J]. Journal of Vibration and Shock, 2010, 29(5): 20–25, 30. DOI: 10.3969/j.issn.1000-3835.2010.05.005. [16] 钟巍, 寿列枫, 何增, 等. 钢化玻璃冲击波毁伤效应测试结果分析 [J]. 爆炸与冲击, 2018, 38(5): 1071–1082. DOI: 10.11883/bzycj-2017-0070.ZHONG W, SHOU L F, HE Z, et al. On experimental blast parameters for damage effect of monolithic tempered glass subjected to blast loading [J]. Explosion and Shock Waves, 2018, 38(5): 1071–1082. DOI: 10.11883/bzycj-2017-0070. [17] JI K P, RUI X M, LI L, et al. A novel ice-shedding model for overhead power line conductors with the consideration of adhesive/cohesive forces [J]. Computers and Structures, 2015, 157: 153–164. DOI: 10.1016/j.compstruc.2015.05.014. [18] FORTIN G, PERRON J. Ice adhesion models to predict shear stress at shedding [J]. Journal of Adhesion Science and Technology, 2012, 26(4−5): 523–553. DOI: 10.1163/016942411X574835. [19] 李黎, 夏正春, 付国祥, 等. 大跨越输电塔-线在线路脱冰作用下的振动 [J]. 振动与冲击, 2008, 27(9): 32–34, 50. DOI: 10.13465/j.cnki.jvs.2008.09.038.LI L, XIA Z C, FU G X, et al. Ice-shedding induced vibration of a long-span electric transmission tower-line system [J]. Journal of Vibration and Shock, 2008, 27(9): 32–34, 50. DOI: 10.13465/j.cnki.jvs.2008.09.038. [20] 王璋奇, 王剑, 齐立忠. 同期脱冰架空输电导线的动张力特性实验研究 [J]. 噪声与振动控制, 2016, 36(1): 157–162. DOI: 10.3969/j.issn.1006-1335.2016.01.034.WANG Z Q, WANG J, QI L Z. Experimental study on the dynamic tension characteristics ofthe overhead transmission conductor undersynchronous ice shedding [J]. Noise and Vibration Control, 2016, 36(1): 157–162. DOI: 10.3969/j.issn.1006-1335.2016.01.034. [21] 陈勇, 胡伟, 王黎明, 等. 覆冰导线脱冰跳跃特性研究 [J]. 中国电机工程学报, 2009, 29(28): 115–121. DOI: 10.3321/j.issn:0258-8013.2009.28.019.CHEN Y, HU W, WANG L M, et al. Research on ice-shedding characteristic of icing conductor [J]. Proceedings of the CSEE, 2009, 29(28): 115–121. DOI: 10.3321/j.issn:0258-8013.2009.28.019. 期刊类型引用(18)
1. 刘明武,黄永辉,李争荣,贾皓琦,甘等俊,李洪超,张智宇. 基于小波变换算法的普朗铜矿爆破振动信号能量分布研究. 中国矿业. 2024(03): 226-234 . 百度学术
2. 王子明,闫建文,杨振军. 洞室爆破振动信号时频分析及能量分布研究. 西安理工大学学报. 2021(02): 261-268 . 百度学术
3. 樊祥喜,曹保山,单仁亮,张有博,魏海兵,宋永威,刘健. 隧道爆破引起路基边坡振动信号的规律研究. 现代隧道技术. 2020(04): 127-135 . 百度学术
4. 牛清勇,李天匀,陈桂娟,曾国伟. 水下气动发射装置振动信号的时频分析. 机床与液压. 2019(05): 6-9 . 百度学术
5. 王伟,李兴华,陈作彬,范磊,孙飞. 基于小波包变换的爆破振动信号能量熵特征分析. 爆破器材. 2019(06): 19-23 . 百度学术
6. 单仁亮,宋永威,白瑶,张凌智,周桐,张书鹏. 基于小波包变换的爆破信号能量衰减特征研究. 矿业科学学报. 2018(02): 119-128 . 百度学术
7. 吴建源,龙源,纪冲,李兴华,马华源,程良玉. 基于希尔伯特黄变换的高压输气管道爆裂振动信号时频特性分析. 振动与冲击. 2018(08): 113-119 . 百度学术
8. 费鸿禄,曾翔宇,杨智广. 隧道掘进爆破振动对地表影响的小波包分析. 爆炸与冲击. 2017(01): 77-83 . 本站查看
9. 宋潮,郑宾,郭华玲,刘辉,侯静. 激光超声的小波包能量分析. 光电工程. 2017(06): 638-642 . 百度学术
10. 习华伟. 不同孔径爆破振动能量优势频带范围分析. 中国矿山工程. 2017(03): 34-36 . 百度学术
11. 杨仁树,付晓强,杨国梁,陈骏,陈玮. EMD和FSWT组合方法在爆破振动信号分析中的应用研究. 振动与冲击. 2017(02): 58-64 . 百度学术
12. 杨仁树,付晓强,杨国梁,陈骏. 基于CEEMD与TQWT组合方法的爆破振动信号精细化特征提取. 振动与冲击. 2017(03): 38-45 . 百度学术
13. 费鸿禄,国志雨,杨智广,曲广建,高英. 隧道掘进爆破振动在地表及上部岩体传播特征. 爆破器材. 2016(04): 54-60 . 百度学术
14. 张春棋,贾云飞,康金. 基于HHT的爆炸冲击波信号分布特性测试分析. 测试技术学报. 2015(06): 473-478 . 百度学术
15. 田运生,左金库. 工程爆破对周围环境振动影响的测试与分析. 工程爆破. 2015(06): 73-77+90 . 百度学术
16. 肖顺根,宋萌萌,赖联锋. 自适应冗余提升小波包变换的滚动轴承故障诊断新方法. 机械强度. 2015(05): 816-822 . 百度学术
17. 谭晓东,覃德泽. 提升小波包和改进BP神经网络相融合的新故障诊断算法. 计算机测量与控制. 2014(08): 2405-2408 . 百度学术
18. 闫建文,徐传召. 梯段爆破过渡区岩体损伤的量化研究. 西安理工大学学报. 2014(02): 220-224 . 百度学术
其他类型引用(14)
-