Hf基非晶合金夹芯结构长杆弹的侵彻行为

林琨富 张先锋 陈海华 熊玮 刘闯 张全孝

林琨富, 张先锋, 陈海华, 熊玮, 刘闯, 张全孝. Hf基非晶合金夹芯结构长杆弹的侵彻行为[J]. 爆炸与冲击, 2021, 41(2): 023301. doi: 10.11883/bzycj-2020-0181
引用本文: 林琨富, 张先锋, 陈海华, 熊玮, 刘闯, 张全孝. Hf基非晶合金夹芯结构长杆弹的侵彻行为[J]. 爆炸与冲击, 2021, 41(2): 023301. doi: 10.11883/bzycj-2020-0181
LIN Kunfu, ZHANG Xianfeng, CHEN Haihua, XIONG Wei, LIU Chuang, ZHANG Quanxiao. Penetration behaviors of Hf-based amorphous alloy jacketed rods[J]. Explosion And Shock Waves, 2021, 41(2): 023301. doi: 10.11883/bzycj-2020-0181
Citation: LIN Kunfu, ZHANG Xianfeng, CHEN Haihua, XIONG Wei, LIU Chuang, ZHANG Quanxiao. Penetration behaviors of Hf-based amorphous alloy jacketed rods[J]. Explosion And Shock Waves, 2021, 41(2): 023301. doi: 10.11883/bzycj-2020-0181

Hf基非晶合金夹芯结构长杆弹的侵彻行为

doi: 10.11883/bzycj-2020-0181
基金项目: 国家自然科学基金(11790292);超高速碰撞研究中心开放基金(20200106);江苏省研究生科研创新计划(KYCX19_0321)
详细信息
    作者简介:

    林琨富(1994- ),男,硕士研究生,linkunfu@njust.edu.cn

    通讯作者:

    张先锋(1978- ),男,博士,教授,博导,lynx@njust.edu.cn

  • 中图分类号: O385

Penetration behaviors of Hf-based amorphous alloy jacketed rods

  • 摘要: 为研究Hf基非晶合金的变形行为及高速侵彻性能,分别开展了Hf基非晶合金材料静动态力学性能和Hf基非晶合金夹芯结构长杆弹高速侵彻45钢靶体试验研究,并与45钢夹芯长杆弹侵彻结果进行对比。研究发现:Hf基非晶合金具有较高的断裂强度,断裂时伴随有能量释放现象;Hf基非晶合金夹芯长杆弹侵彻钢靶过程可分为3个阶段:开坑、夹芯结构侵彻和剩余弹体侵彻。Hf非晶合金在侵彻过程中发生了明显的释能反应,显著地增强了弹体毁伤效应,扩大了侵彻弹孔直径,增加了弹体侵彻深度和弹孔体积。在高速冲击下,Hf基非晶合金夹芯长杆弹表现出优异的侵彻性能,可以为非晶合金材料在高效毁伤领域的应用提供新思路。
  • 图  1  准静态压缩试验试件断裂过程

    Figure  1.  High-speed video photographs in the quasi-static compression experiment

    图  2  试件准静态压缩断裂前后状态

    Figure  2.  States of the specimen before and after quasi-static compression fracture

    图  3  试件准静态压缩的真实应力-真实应变曲线

    Figure  3.  True stress-true strain curves of the quasi-static compression of the specimens

    图  4  Hf基非晶合金的动态应力-应变曲线

    Figure  4.  Dynamic stress-strain curves of Hf-based amorphous alloys at different strain rates

    图  5  Hf基非晶合金材料断裂强度-应变率曲线

    Figure  5.  Strain rate response curve of Hf-based amorphous alloy materials

    图  6  SHPB试验后Hf基非晶合金试件状态

    Figure  6.  State of Hf-based amorphous alloy sample after SHPB experiment

    图  7  夹芯结构长杆弹示意图(单位:mm)

    Figure  7.  Schematic diagram of the jacketed rod projectiles (unit: mm)

    图  8  实验布局示意图

    Figure  8.  Schematic diagram of the experimental setup

    图  9  弹体飞行及着靶姿态的高速摄像

    Figure  9.  High-speed video photography of the projectiles flight and landing postures

    图  10  弹体侵彻靶体的高速摄像

    Figure  10.  High-speed video photographs of the projectiles penetrating the targets

    图  11  靶体剖面

    Figure  11.  Sections of the targets

    图  12  Hf-W夹芯长杆弹弹孔剖面

    Figure  12.  Cross-section of Hf-W (1180 m/s)

    图  13  Steel-W夹芯长杆弹弹孔剖面

    Figure  13.  Cross-section of Steel-W (1196 m/s)

    图  14  夹芯结构长杆弹侵彻弹孔轮廓

    Figure  14.  Penetrating ballistic outline at different speeds

    图  15  长杆弹侵彻深度和撞击动能的关系曲线

    Figure  15.  Relation curves of kinetic energy and penetration depth of both projectiles

    图  16  长杆弹弹孔体积和撞击动能的关系曲线

    Figure  16.  Relation curves of kinetic energy and total penetration volume of both projectiles

    图  17  长杆弹最大弹孔直径和撞击动能的关系

    Figure  17.  Relation curves of kinetic energy and the maximum penetration diameter of both projectiles

    表  1  准静态压缩实验数据

    Table  1.   Quasi-static compression experimental data

    编号压缩速度/(mmmin−1)尺寸/(mmmm)最大载荷/kN应变率/s−1抗压强度/GPa
    10.36$\varnothing $3.98×5.9820.61×10−31.53
    20.36$\varnothing $3.96×6.0022.41×10−31.68
    30.36$\varnothing $3.94×6.0024.01×10−31.80
    40.36$\varnothing $4.00×6.0221.11×10−31.58
    50.36$\varnothing $4.02×6.0225.21×10−31.88
    下载: 导出CSV

    表  2  SHPB实验数据

    Table  2.   SHPB experimental data

    编号速度/(m∙s−1)尺寸/(mmmm)应变率/s−1断裂强度/MPa
    110.4$ \varnothing $4.02×6.00 5501 470
    212.3$ \varnothing $4.00×5.98 7601 410
    313.7$ \varnothing $4.02×5.98 8901 300
    414.8$ \varnothing $4.02×6.02 9801 280
    516.2$ \varnothing $4.02×6.0011701 260
    616.4$ \varnothing $4.02×5.9812001 250
    717.5$ \varnothing $4.02×6.0013701 220
    818.5$ \varnothing $4.02×6.0214501 280
    918.9$ \varnothing $4.02×6.0215801 150
    下载: 导出CSV

    表  3  弹体材料参数

    Table  3.   Material parameters of the projectile

    材料密度/(g∙cm−3)HRC硬度强度/MPa
    Hf基非晶合金 8.1050 1 600
    调质处理45钢 7.8550 562
    钨合金[22]17.635.51 250
    下载: 导出CSV

    表  4  实验后靶体成坑参数

    Table  4.   Crater parameters of targets

    弹体材料编号弹体速度/(m∙s−1)弹体动能/kJ侵彻深度/mm弹孔体积/cm3弹孔直径/mm
    Hf-W91 041 70.4441.4921.1430.24
    81 088 76.9444.6621.9929.51
    11 180 90.5152.5125.4231.81
    41 221 96.9054.2527.8632.47
    51 264103.8562.5732.4732.82
    71 347117.9469.2840.0032.56
    61 486143.5379.0052.3634.62
    Steel-W171 000 66.5034.0511.8223.33
    111 184 93.2251.2622.8627.57
    131 196 95.1252.0223.7126.68
    141 276108.2760.0529.8528.10
    151 460141.7573.0442.3930.31
    161 464141.9574.0644.8130.14
    下载: 导出CSV
  • [1] 杜忠华, 杜成鑫, 朱正旺, 等. 钨丝/锆基非晶复合材料长杆体弹芯穿甲实验研究 [J]. 稀有金属材料与工程, 2016, 45(5): 1308–1313.

    DU Z H, DU C X, ZHU Z W, et al. An experimental study on perforation behavior of pole penetrator prepared from WF/Zr-based bulk metallic glass matrix composite [J]. Rare Metal Materials and Engineering, 2016, 45(5): 1308–1313.
    [2] CULLIS I G, LYNCH N J. Hydrocode and experimental analysis of scale size jacketed KE projectiles [C] // Proceedings of the 14th International Symposium on Ballistics. Quebec, Canada, 1993: 271−280.
    [3] LEHR H F, WOLLMAN E, KOERBER G. Experiments with jacketed rods of high fineness ratio [J]. International Journal of Impact Engineering, 1995, 17(4−6): 517–526. DOI: 10.1016/0734-743x(95)99876-s.
    [4] SORENSEN B R, KIMSEY K D, ZUKAS J A, et al. Numerical analysis and modeling of jacketed rod penetration [J]. International Journal of Impact Engineering, 1999, 22(1): 71–91. DOI: 10.1016/S0734-743X(98)00043-8.
    [5] PEDERSEN B A, BLESS S J, CAZAMIAS J U. Hypervelocity jacketed penetrators [J]. International Journal of Impact Engineering, 2001, 26(1−10): 603–611. DOI: 10.1016/S0734-743X(01)00121-X.
    [6] LEE M. Analysis of jacketed rod penetration [J]. International Journal of Impact Engineering, 2000, 24(9): 891–905. DOI: 10.1016/S0734-743X(00)00020-8.
    [7] WEN H M, HE Y, LAN B. A combined numerical and theoretical study on the penetration of a jacketed rod into semi-infinite targets [J]. International Journal of Impact Engineering, 2011, 38(12): 1001–1010. DOI: 10.1016/j.ijimpeng.2011.07.001.
    [8] TANG K, WANG J, CHEN X, et al. Investigation on the damage mechanisms and penetration performance of jacketed rods with different striking velocities [J]. Journal of Applied Mechanics and Technical Physics, 2019, 60(4): 724–731. DOI: 10.1134/S0021894419040175.
    [9] 兰彬. 长杆弹侵彻半无限靶的数值模拟和理论研究[D]. 合肥: 中国科学技术大学, 2008: 91−99.
    [10] 何雨. 长杆弹撞击下金属靶板侵彻与穿透的进一步研究[D]. 合肥: 中国科学技术大学, 2013: 40−46.
    [11] CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007.
    [12] MARTIN M, KECSKES L, THADHANI N N. Dynamic compression of a zirconium-based bulk metallic glass confined by a stainless steel sleeve [J]. Scripta Materialia, 2008, 59(7): 688–691. DOI: 10.1016/j.scriptamat.2008.05.045.
    [13] 潘念侨. Zr基非晶合金材料动态本构关系及其释能效应研究[D]. 南京: 南京理工大学, 2016: 36−54.
    [14] 尚春明, 施冬梅, 张云峰, 等. Zr基非晶合金毁伤研究进展 [J]. 兵器装备工程学报, 2020, 41(7): 182–186. DOI: 10.11809/bqzbgcxb2020.07.036.

    SHANG C M, SHI D M, ZHANG Y F, et al. Research progress on damage of Zr-based amorphous alloys [J]. Journal of Ordnance Equipment Engineering, 2020, 41(7): 182–186. DOI: 10.11809/bqzbgcxb2020.07.036.
    [15] 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177–351.

    WANG W H. The nature and properties of amorphous matter [J]. Progress in Physics, 2013, 33(5): 177–351.
    [16] 陈曦, 杜成鑫, 程春, 等. Zr基非晶合金材料的冲击释能特性 [J]. 兵器材料科学与工程, 2018, 41(6): 44–49. DOI: 10.14024/j.cnki.1004-244x.20180717.002.

    CHEN X, DU C X, CHENG C, et al. Impact energy releasing characteristics of Zr-based amorphous alloy [J]. Ordnance Material Science and Engineering, 2018, 41(6): 44–49. DOI: 10.14024/j.cnki.1004-244x.20180717.002.
    [17] 宋璇, 吴先前, 戴兰宏, 等. 纳秒脉冲激光烧蚀非晶合金的研究进展 [J]. 固体力学学报, 2018, 39(5): 439–452. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2018.032.

    SONG X, WU X Q, DAI L H, et al. Advances on nanosecond pulse laser ablation of amorphous alloys [J]. Chinese Journal of Solid Mechanics, 2018, 39(5): 439–452. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2018.032.
    [18] 尚春明, 施冬梅, 张云峰, 等. Zr基非晶合金的燃烧释能特性 [J]. 含能材料, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.

    SHANG C M, SHI D M, ZHANG Y F, et al. Combustion and energy release characteristics of Zr-based amorphous alloys [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.
    [19] HUANG C M, LI S, BAI S X. Quasi-static and impact-initiated response of Zr55Ni5Al10Cu30 alloy [J]. Journal of Non-Crystalline Solids, 2018, 481: 59–64. DOI: 10.1016/j.jnoncrysol.2017.10.011.
    [20] 石永相, 施冬梅. ZrCuNiAlAg块体非晶合金动静态力学性能研究 [J]. 热加工工艺, 2019, 48(6): 83–86, 90. DOI: 10.14158/j.cnki.1001-3814.2019.06.020.

    SHI Y X, SHI D M. Study on dynamic and static mechanical properties of ZrCuNiAlAg bulk amorphous alloy [J]. Hot Working Technology, 2019, 48(6): 83–86, 90. DOI: 10.14158/j.cnki.1001-3814.2019.06.020.
    [21] 石永相. 多元非晶合金含能材料药型罩应用研究[D]. 石家庄: 陆军工程大学, 2017: 44−56.
    [22] HU K, LI X Q, GUAN M, et al. Dynamic deformation behavior of 93W-5.6Ni-1.4Fe heavy alloy prepared by spark plasma sintering [J]. International Journal of Refractory Metals and Hard Materials, 2016, 58: 117–124. DOI: 10.1016/j.ijrmhm.2016.04.010.
    [23] 郭俊. 活性分段动能杆对混凝土靶的毁伤效应研究[D]. 北京: 北京理工大学, 2016: 36−64.
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  604
  • HTML全文浏览量:  282
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-03
  • 修回日期:  2020-11-05
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回