混凝土靶侵爆条件下破坏深度的模型实验研究

卢浩 岳松林 孙善政 宋春明 熊自明

卢浩, 岳松林, 孙善政, 宋春明, 熊自明. 混凝土靶侵爆条件下破坏深度的模型实验研究[J]. 爆炸与冲击, 2021, 41(7): 073301. doi: 10.11883/bzycj-2020-0191
引用本文: 卢浩, 岳松林, 孙善政, 宋春明, 熊自明. 混凝土靶侵爆条件下破坏深度的模型实验研究[J]. 爆炸与冲击, 2021, 41(7): 073301. doi: 10.11883/bzycj-2020-0191
LU Hao, YUE Songlin, SUN Shanzheng, SONG Chunming, XIONG Ziming. Model test study on damage depth of concrete target under penetration and explosion[J]. Explosion And Shock Waves, 2021, 41(7): 073301. doi: 10.11883/bzycj-2020-0191
Citation: LU Hao, YUE Songlin, SUN Shanzheng, SONG Chunming, XIONG Ziming. Model test study on damage depth of concrete target under penetration and explosion[J]. Explosion And Shock Waves, 2021, 41(7): 073301. doi: 10.11883/bzycj-2020-0191

混凝土靶侵爆条件下破坏深度的模型实验研究

doi: 10.11883/bzycj-2020-0191
基金项目: 国家自然科学基金(51808552)
详细信息
    作者简介:

    卢 浩(1987- ),男,博士,讲师,lh829829@163.com

  • 中图分类号: O383

Model test study on damage depth of concrete target under penetration and explosion

  • 摘要: 为研究混凝土靶侵彻后空腔对爆炸效应的影响,开展了450~700 m/s速度下混凝土靶体侵彻与爆炸模型实验。基于10组实验结果,结合量纲分析等方法,研究了侵彻结果对爆坑深度的影响。结果表明,可采用无量纲冲击系数表征侵彻深度、开坑体积以及侵彻损伤值等侵彻效应,不考虑装药长径比的影响,侵彻后爆炸带来的破坏深度增加量he主要受无量纲冲击系数Ip与爆炸系数Ie的影响。利用实验数据获得了长径比为5时he的影响规律:(1) Ip较小时,侵彻深度较小,Ie的变化对爆炸弹坑深度he变化影响较小;(2) 随着Ip的增加,he不断增加,但增加幅度逐渐变小,Iehe的影响不断变大;(3)随着Ip增加到一定程度,he趋于常数,Iehe的影响趋于稳定。
  • 图  1  实验用素混凝土靶

    Figure  1.  Plain concrete target for test purposes

    图  2  实验用弹体

    Figure  2.  Projectile for test purposes

    图  3  实验用药柱

    Figure  3.  Explosive columns for test purposes

    图  4  侵彻实验现场与扫描结果图

    Figure  4.  Penetration testing field and 3D model of crater

    图  5  爆炸实验现场与扫描结果图

    Figure  5.  Explosion testing field and 3D model of crater

    图  6  侵彻爆炸实验结果对比图

    Figure  6.  Comparison of penetration explosion test results

    图  7  侵彻坑体积与爆炸深度之间的关系

    Figure  7.  Relationship between penetration crater volume and depth of explosion

    图  8  侵彻隧道区深度与爆炸深度之间的关系

    Figure  8.  Relationship between depth of penetration in the tunnel region and depth of explosion

    图  9  侵彻坑体积与冲击系数之间的关系

    Figure  9.  Relationship between penetration crater volume and impact coefficient

    图  10  侵彻隧道区深度与冲击系数之间的关系

    Figure  10.  Relationship between depth of penetration in the tunnel region and impact coefficient

    图  11  爆炸作用下坑深增加量he与冲击系数之间的关系

    Figure  11.  Relationship betweenincreased depth of crater under explosion and impact coefficient

    表  1  侵彻实验结果

    Table  1.   Penetration test data

    靶体材料vp/(m·s−1Vpc/cm3hp/mhpt/m靶体材料vp/(m·s−1Vpc/cm3hp/mhpt/m
    1C30479.202990.2110.1366C30567.474050.2620.172
    2C30488.731620.2210.1297C40548.821680.2250.142
    3C30512.372090.2260.1518C40566.251620.2340.146
    4C30525.272070.2320.1449C40612.522560.2530.178
    5C30551.133550.2670.18610C40675.753380.2790.187
    下载: 导出CSV

    表  2  爆炸实验结果

    Table  2.   Explosion test data

    靶体hp/mme/ghpe/mhe/m靶体hp/mme/ghpe/mhe/m
    10.21139.250.231 0.02060.26239.250.2950.033
    20.22139.250.246 0.02570.22539.250.2410.016
    30.22639.250.256 0.03080.23439.250.2550.021
    40.23239.250.263 0.03190.25339.250.2990.025
    50.26739.25贯穿>0.233100.27939.250.3150.036
    下载: 导出CSV
  • [1] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [2] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [3] 王明洋, 郑大亮, 白晓燕. 弹体对钢筋混凝土板-钢板的贯穿计算问题 [J]. 爆炸与冲击, 2005, 25(4): 289–295. DOI: 10.11883/1001-1455(2005)04-0289-07.

    WANG M Y, ZHENG D L, BAI X Y. Theoretical study on the perforation of reinforced concrete with back-up steel plate(RCBSP) by projectiles [J]. Explosion and Shock Waves, 2005, 25(4): 289–295. DOI: 10.11883/1001-1455(2005)04-0289-07.
    [4] 邓国强, 杨秀敏. 工程岩体中多弹重复打击效应的数值模拟分析 [J]. 爆炸与冲击, 2014, 34(3): 361–366. DOI: 10.11883/1001-1455(2014)03-0361-06.

    DENG G Q, YANG X M. Numerical simulation of the effect of multiply EPW into engineering rock [J]. Explosion and Shock Waves, 2014, 34(3): 361–366. DOI: 10.11883/1001-1455(2014)03-0361-06.
    [5] GANG H, KWAK H G. A strain rate dependent orthotropic concrete material model [J]. International Journal of Impact Engineering, 2017, 103: 211–224. DOI: 10.1016/j.ijimpeng.2017.01.027.
    [6] 吴成, 沈晓军, 王晓鸣, 等. 细观混凝土靶抗侵彻数值模拟及侵彻深度模型 [J]. 爆炸与冲击, 2018, 38(6): 1364–1371. DOI: 10.11883/bzycj-2017-0123.

    WU C, SHEN X J, WANG X M, et al. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target [J]. Explosion and Shock Waves, 2018, 38(6): 1364–1371. DOI: 10.11883/bzycj-2017-0123.
    [7] SHER E N, MIKHAILOV A M, CHERNIKOV A G. Brittle failure zone size under the concentrated charge blasting near free surface [J]. Journal of Mining Science, 2011, 47(6): 734–740. DOI: 10.1134/S1062739147060050.
    [8] FU Y S, ZHANG Q M, WANG H J. Study on formative mechanism of blasting crater in reinforced concrete under internal blast loading [J]. Key Engineering Materials, 2006, 326/328: 1645–1648. DOI: 10.4028/www.scientific.net/KEM.326-328.1645.
    [9] 王晋平, 刘彦, 段卓平, 等. 带壳装药混凝土中爆炸震塌效应研究 [J]. 兵工学报, 2014, 35(S2): 207–212.

    WANG J P, LIU Y, DUAN Z P, et al. Collapse effect of concrete under internal explosion of shelled charge [J]. Acta Armamentarii, 2014, 35(S2): 207–212.
    [10] 高全臣. 复合防护结构抗侵彻爆炸性能的试验研究[C] // 现代爆破理论与技术——第十届全国煤炭爆破学术会议论文集. 北京: 煤炭工业出版社, 2008: 93−98.
    [11] YANG G D, WANG G H, LU W B, et al. A SPH-Lagrangian-Eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion [J]. KSCE Journal of Civil Engineering, 2018, 22(8): 3085–3101. DOI: 10.1007/s12205-017-0610-1.
    [12] 宋顺成, 李国斌, 才鸿年, 等. 战斗部对混凝土先侵彻后爆轰的数值模拟 [J]. 兵工学报, 2006, 27(2): 230–234. DOI: 10.3321/j.issn:1000-1093.2006.02.010.

    SONG S C, LI G B, CAI H N, et al. Numerical simulation of penetration-then-detonation of concrete target with projectile [J]. Acta Armamentarii, 2006, 27(2): 230–234. DOI: 10.3321/j.issn:1000-1093.2006.02.010.
    [13] 宋顺成, 才鸿年. 模拟战斗部对混凝土侵彻与爆炸耦合作用的计算 [J]. 弹道学报, 2004, 16(4): 23–28, 47. DOI: 10.3969/j.issn.1004-499X.2004.04.005.

    SONG S C, CAI H N. Computations for coupled actions of simulated projectile penetrating and detonating to concrete [J]. Journal of Ballistics, 2004, 16(4): 23–28, 47. DOI: 10.3969/j.issn.1004-499X.2004.04.005.
    [14] 李守苍, 李树强, 闫玉凤, 等. 战斗部侵彻钢筋混凝土靶中爆炸毁伤的数值模拟和试验研究 [J]. 防护工程, 2016, 38(4): 5–10.

    LI S C, LI S Q, YAN Y F, et al. Numerical simulation and experimental study on warhead explosion damage after penetration into reinforced concrete target [J]. Protective Engineering, 2016, 38(4): 5–10.
    [15] 杨广栋, 王高辉, 卢文波, 等. 侵彻与爆炸联合作用下混凝土靶体的毁伤效应分析 [J]. 中南大学学报(自然科学版), 2017, 48(12): 3284–3292. DOI: 10.11817/j.issn.1672-7207.2017.12.020.

    YANG G D, WANG G H, LU W B, et al. Damage characteristics of concrete structures under the combined loadings of penetration and explosion [J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3284–3292. DOI: 10.11817/j.issn.1672-7207.2017.12.020.
    [16] 任辉启, 穆朝民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护[M]. 北京: 科学出版社, 2016.

    REN H Q, MU C M, LIU R C, et al. Penetration effects of precision guided weapons and engineering protection [M]. Beijing: Science Press, 2016.
    [17] LI J Z, LV Z J, ZHANG H S, et al. Perforation experiments of concrete targets with residual velocity measurements [J]. International Journal of Impact Engineering, 2013, 57: 1–6. DOI: 10.1016/j.ijimpeng.2013.01.007.
    [18] PENG Y, WU H, FANG Q, et al. Residual velocities of projectiles after normally perforating the thin ultra-high performance steel fiber reinforced concrete slabs [J]. International Journal of Impact Engineering, 2016, 97: 1–9. DOI: 10.1016/j.ijimpeng.2016.06.006.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  371
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-10
  • 修回日期:  2021-01-31
  • 网络出版日期:  2021-06-30
  • 刊出日期:  2021-07-05

目录

    /

    返回文章
    返回