Experimental study on the mitigation effects of confined-blast loading
-
摘要: 炸药在密闭空间内爆炸时的爆炸载荷与在敞开环境中有很大差异,在密闭空间内,TNT炸药的爆炸产物能够与周围空气充分混合并发生燃烧反应进而释放额外的能量,使密闭空间内的反射冲击波及准静态压力均明显增加。为探究不同气体环境对密闭空间内爆炸载荷的抑制效应,开展了3种不同药量的TNT分别在空气、水雾和氮气环境密闭空间内的爆炸实验研究,通过理论计算和实验对比分析了密闭空间内的爆炸载荷压力、温度及受载钢板试件响应特性。结果表明,水雾和氮气均能有效降低空间内的准静态压力和温度,对准静态压力的平均降幅分别为36.0%和51.7%,对温度的平均降幅分别为42.6%和40.3%;在水雾和氮气环境中的爆炸载荷作用下,钢板试件动态响应较空气环境中显著降低,其中160 g药量下,水雾和氮气环境中钢板试件的最终变形分别减少了15.9%和23.5%,氮气的减弱效果优于水雾;水雾和氮气均能及时有效地抑制封闭空间内的爆炸载荷,降低结构的损伤程度。Abstract: The blast loading from an explosion in a confined space is quite different from that in an open environment. The detonation products of TNT can be fully mixed with the surrounding air, and release additional energy through combustion effect, resulting in a significantly increase of the reflected shockwaves and quasi-static pressure in the confined space.In order to investigate the mitigation effect of different atmosphere on explosion load in confined space, the experimental tests of TNT with three different charge masses were performed in a fully confined chamber filled with air, water mist and nitrogen, respectively. The explosive load pressure, temperature and the response characteristics of blast-loaded steel plates in the confined space were analyzed by theoretical calculation and experiment. The results show that both the water mist and the nitrogen can effectively reduce the reflected shock wave, the quasi-static pressure and the temperature in the confined chamber. The average reduction rate of quasi-static pressure is 36.0% and 51.7%, and the average reduction rate of temperature is 42.6% and 40.3%, respectively. The ideal gas state equation was used to calculate the theoretical value of quasi-static pressure in the confined space filled with nitrogen. It is found that the theoretical value is slightly larger than the experimental value, which is due to the insufficient combustion of detonation products in the test. The dynamic response of blast-loaded steel plates in water mist and nitrogen atmosphere is significantly lower than that in the air condition, and the residual deformation of the steel plate at 160 g TNT in water mist and air conditions, the attenuating effect of nitrogen is better than that of water mist. It is revealed that the mechanism of the water mist and nitrogen in mitigating the confined blast load and the subsequent dynamic response of structure is restraining the energy release from the combustion of the detonation products. The conclusions can provide references for the design of anti-blast structure.
-
表 1 试件材料力学性能
Table 1. Mechanical properties of the steel plates
杨氏模量/GPa 硬化模量/GPa 泊松比 屈服强度/MPa 密度/(kg·m−3) 206 1.06 0.28 324 7850 表 2 水雾粒径及累积体积分数
Table 2. Water-mist diameter and cumulative volume fraction
粒径/μm 5 10 20 45 75 100 200 300 体积分数/% 0.00 0.03 2.09 19.28 55.53 79.00 99.77 100.00 表 3 工况设置
Table 3. Load conditions of experimental test
工况 试件板厚度/mm TNT质量/g 舱内环境 1 4.0 80 空气 2 4.0 120 空气 3 4.0 160 空气 4 4.0 80 水雾 5 4.0 120 水雾 6 4.0 160 水雾 7 − 80 氮气 8 3.0 120 氮气 9 4.0 160 氮气 表 4 圆柱形TNT炸药的尺寸
Table 4. Detailed size of cylindrical TNT charges
TNT质量/g 高度/mm 直径/mm 80 40.5 40.6 120 38.9 50.3 160 51.5 50.4 表 5 水雾和空气环境内爆载荷及等效能量
Table 5. Confined-blast loading and equivalent energy in chamberfilled with water mist and air
TNT质量/
g舱内
环境首冲击波
峰值/kPa准静态压力
峰值/kPa准静态压力
降低率/%等效能量/
(kJ·kg−1)80 空气 546.7 262.8 31.1 9461.0 水雾 336.2 181.1 6520.8 120 空气 722.6 358.3 34.7 8600.1 水雾 669.4 233.8 5612.3 160 空气 1033.1 490.6 42.1 8831.3 水雾 693.9 284.1 5113.2 表 6 氮气和空气环境中的内爆载荷及等效能量
Table 6. Confined-blast loading and equivalent energy in chamber filled with nitrogen and air
TNT质量/g 舱内环境 首冲击波峰值/kPa 准静态压力峰值/kPa 准静态压力降低率/% 等效能量/(kJ·kg−1) 80 空气 546.7 262.8 53.8 9461.0 氮气 554.7 121.5 4375.6 120 空气 722.6 358.3 48.9 8600.1 氮气 728.6 183.0 4392.2 160 空气 1033.1 490.6 52.3 8831.3 氮气 908.8 234.2 4215.8 表 7 氮气工况下箱内气体属性
Table 7. Parameters of gasin chamber filled with nitrogen
气体 比定容热容/(kJ·kg−1·K−1)(25 ℃) 密度/(kg·m−3)(25 ℃) 水蒸气(H2O) 1.400 一氧化碳(CO) 0.743 1.250 氮气(N2) 0.741 1.250 氧气(O2) 0.657 1.429 二氧化碳(CO2) 0.638 1.977 表 8 氮气工况下各药量下准静态压力计算值
Table 8. Calculated results of quasi-static pressure in nitrogen environment
TNT质量/g mg/g cV/(kJ·kg−1·K−1) pqs/kPa 80 1530.4 0.739 123.5 120 1570.4 0.741 185.6 160 1610.4 0.747 239.1 表 9 水雾和空气环境工况不同测点位置的温度峰值平均值
Table 9. Average value of temperature peaks at different measuring points in water mist and air conditions
TNT质量/g 空气工况 水雾工况 T1、T3、T5点温度平均值/℃ T2、T4点温度平均值/℃ T1、T3、T5点温度平均值/℃ T2、T4点温度平均值/℃ 80 479.5 399.3 338.3 191.2 120 586.0 488.9 404.4 254.3 160 748.5 817.5 460.1 355.3 表 10 水雾工况相较于空气工况的温度峰值下降比例
Table 10. Proportion of peak temperature drop in water mist condition relative to air conditions
TNT质量/g T1、T3、T5点温度平均值降低比例/% T2、T4点温度平均值降低比例/% 整体温度峰值平均值降低比例/% 80 29.5 52.1 40.8 120 31.0 48.0 39.5 160 38.5 56.5 47.5 表 11 氮气和空气环境工况下不同测点位置的温度峰值平均值
Table 11. Average value of temperature peaks at different measuring points in water mist and air conditions
TNT质量/g 空气工况 氮气工况 T1、T3、T5点温度平均值/℃ T2、T4点温度平均值/℃ T1、T3、T5点温度平均值/℃ T2、T4点温度平均值/℃ 80 479.5 399.3 180.9 124.6 120 586.0 488.9 480.5 422.8 160 748.5 817.5 557.6 475.5 表 12 氮气工况相较于空气工况下温度峰值下降比例
Table 12. Proportion of peak temperature drop in nitrogen condition relative to air conditions
TNT质量/g T1、T3、T5点温度平均值降低比例/% T2、T4点温度平均值降低比例/% 整体温度峰值平均值降低比例/% 80 62.3 68.8 65.5 120 18.0 25.6 21.8 160 25.5 41.8 33.7 表 13 空气和水雾环境工况下内爆载荷的等效冲量
Table 13. Equivalent impulse of confined-blast loading at different charge masses in water mist and air conditions
TNT质量/g 舱内环境 δ/h Ieq/(N·s) 饱和响应时间/ms pa/kPa 80 空气 8.5 723.9 2.4 477.3 水雾 7.0 598.3 2.5 373.9 氮气 120 空气 11.0 934.1 2.2 654.5 水雾 9.3 793.6 2.3 539.2 氮气 14.7 704.4 2.5 440.3 160 空气 13.2 1124.6 2.6 689.1 水雾 11.1 946.4 2.4 616.2 氮气 10.1 854.8 2.4 556.5 -
[1] 胡宏伟, 宋浦, 赵省向, 等. 有限空间内部爆炸研究进展 [J]. 含能材料, 2013, 21(4): 539–546. DOI: 10.3969/j.issn.1006-9941.2013.04.026.HU H W, SONG P, ZHAO S X, et al. Progressinexplosioninconfinedspace [J]. ChineseJournalofEnergeticMaterials, 2013, 21(4): 539–546. DOI: 10.3969/j.issn.1006-9941.2013.04.026. [2] WU C Q, LUKASZEWICZ M, SCHEBELLA K, et al. Experimental and numerical investigation of confined explosion in a blast chamber [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 737–750. DOI: 10.1016/j.jlp.2013.02.001. [3] ZHENG C, KONG X S, WU W G, et al. The elastic-plastic dynamic response of stiffened plates under confined blast load [J]. International Journal of Impact Engineering, 2016, 95: 141–153. DOI: 10.1016/j.ijimpeng.2016.05.008. [4] CAÇOILO A, TEIXEIRA-DIAS F, MOURÃO R, et al. Blast wave propagation in survival shelters: experimental analysis and numerical modelling [J]. Shock Waves, 2018, 28(6): 1169–1183. DOI: 10.1007/s00193-018-0858-5. [5] DONAHUE L, ZHANG F, RIPLEY R C. Numerical models for afterburning of TNT detonation products in air [J]. Shock Waves, 2013, 23(6): 559–573. DOI: 10.1007/s00193-013-0467-2. [6] KONG X S, ZHOU H, ZHENG C, et al. An experimental study on the mitigation effects of fine water mist on confined-blast loading and dynamic response of steel plates [J]. International Journal of Impact Engineering, 2019, 134: 103370. DOI: 10.1016/j.ijimpeng.2019.103370. [7] ANANTH R, WILLAUER H D, FARLEY J P, et al. Effects of fine water mist on a confined blast [J]. Fire Technology, 2012, 48(3): 641–675. DOI: 10.1007/s10694-010-0156-y. [8] WILLAUER H D, ANANTH R, FARLEY J P, et al. Mitigation of TNT and Destex explosion effects using water mist [J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 1068–1073. DOI: 10.1016/j.jhazmat.2008.10.130. [9] MATARADZE E, CHIKHRADZE N, BOCHORISHVILI N, et al. Experimental study of the effect of water mist location on blast overpressure attenuation in a shock tube [J]. IOP Conference Series: Earth and Environmental Science, 2017, 95(4): 042031. DOI: 10.1088/1755-1315/95/4/042031. [10] SCHWER D A, KAILASANATH K. Numerical simulations of the mitigation of unconfined explosions using water-mist [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2361–2369. DOI: 10.1016/j.proci.2006.07.145. [11] ADIGA K C, WILLAUER H D, ANANTH R, et al. Implications of droplet breakup and formation of ultra fine mist in blast mitigation [J]. Fire Safety Journal, 2009, 44(3): 363–369. DOI: 10.1016/j.firesaf.2008.08.003. [12] JONES A, NOLAN P F. Discussions on the use of fine water sprays or mists for fire suppression [J]. Journal of Loss Prevention in the Process Industries, 1995, 8(1): 17–22. DOI: 10.1016/0950-4230(95)90057-V. [13] 胡翔. 细水雾对冲击波的削弱作用研究[D]. 武汉: 武汉理工大学, 2018.HU X. Research on the mitigation of shock wave using fine water mist [D]. Wuhan: Wuhan University of Technology, 2018. [14] 陈鹏宇, 侯海量, 刘贵兵, 等. 水雾对舱内装药爆炸载荷的耗散效能试验研究 [J]. 兵工学报, 2018, 39(5): 927–933. DOI: 10.3969/j.issn.1000-1093.2018.05.012.CHEN P Y, HOU H L, LIU G B, et al. Experimental investigation on mitigatingeffect of water mist on theexplosive shock wave inside cabin [J]. Acta Armamentarii, 2018, 39(5): 927–933. DOI: 10.3969/j.issn.1000-1093.2018.05.012. [15] 孔祥韶, 况正, 郑成, 等. 舱室密闭空间中爆炸载荷燃烧增强效应试验研究 [J]. 兵工学报, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009.KONG X S, KUANG Z, ZHENG C, et al. Experimental study of after burning enhancement effect for blast load in confined compartment space [J]. ActaArmamentarii, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009. [16] 金朋刚, 郭炜, 任松涛, 等. TNT密闭环境中能量释放特性研究 [J]. 爆破器材, 2014, 43(2): 10–14. DOI: 10.3969/j.issn.1001-8352.2014.02.003.JIN P G, GUO W, REN S T, et al. ResearchonTNTenergyrelease characteristicsinenclosedcondition [J]. ExplosiveMaterials, 2014, 43(2): 10–14. DOI: 10.3969/j.issn.1001-8352.2014.02.003. [17] 金朋刚, 郭炜, 王建灵, 等. 密闭条件下TNT的爆炸压力特性 [J]. 火炸药学报, 2013, 36(3): 39–41. DOI: 10.3969/j.issn.1007-7812.2013.03.009.JIN P G, GUO W, WANG J L, et al. Explosion pressure characteristics of TNT under closed condition [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 39–41. DOI: 10.3969/j.issn.1007-7812.2013.03.009. [18] 张玉磊, 苏健军, 李芝绒, 等. TNT内爆炸准静态压力特性 [J]. 爆炸与冲击, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.ZHANG Y L, SU J J, LI Z R, et al. Quasi-static pressure characteristic of TNT’s internal explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170. [19] 李芝绒, 王胜强, 蒋海燕, 等. 圆筒装置内爆炸压力载荷特性实验研究 [J]. 爆炸与冲击, 2019, 39(10): 102202. DOI: 10.11883/bzycj-2018-0327.LI Z R, WANG S Q, JIANG H Y, et al. Experimental studies on characteristics of explosion pressure load in cylinder apparatus [J]. Explosion and Shock Waves, 2019, 39(10): 102202. DOI: 10.11883/bzycj-2018-0327. [20] FELDGUN V R, KARINSKI Y S, EDRI I, et al. Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures [J]. International Journal of Impact Engineering, 2016, 90: 46–60. DOI: 10.1016/j.ijimpeng.2015.12.001. [21] 王等旺, 张德志, 李焰, 等. 爆炸容器内准静态气压实验研究 [J]. 兵工学报, 2012, 33(12): 1493–1497.WANG D W, ZHANG D Z, LI Y, et al. Experiment investigation on quasi-static pressure in explosion containment vessels [J]. Acta Armamentarii, 2012, 33(12): 1493–1497. [22] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading—a review part II: Experimental studies [J]. International Journal of Impact Engineering, 1989, 8(2): 171–186. DOI: 10.1016/0734-743X(89)90015-8. [23] YUEN S C K, NURICK G N, LANGDON G S, et al. Deformation of thin plates subjected to impulsive load: part III–an update 25 years on [J]. International Journal of Impact Engineering, 2017, 107: 108–117. DOI: 10.1016/j.ijimpeng.2016.06.010. [24] 孔祥韶, 周沪, 郑成, 等. 基于饱和响应时间的封闭空间内爆炸载荷等效方法研究 [J]. 爆炸与冲击, 2019, 39(9): 092102. DOI: 10.11883/bzycj-2018-0183.KONG X S, ZHOU H, ZHENG C, et al. An equivalent calculation method for confined-blast load based on saturated response time [J]. Explosion and Shock Waves, 2019, 39(9): 092102. DOI: 10.11883/bzycj-2018-0183.