Experimental study on shock wave from dynamic explosion of a warhead based on seismic wave triggering
-
摘要: 提出了一种基于地震波触发的战斗部爆炸冲击波超压测试方法,该测试方法能可靠获取战斗部动爆冲击波超压峰值。采用提出的测试方法对着靶速度为0、535和980 m/s的战斗部空中爆炸冲击波分别进行了测试,并对战斗部动爆冲击波超压峰值测试结果和经验公式计算值进行了对比,定量分析了战斗部速度对冲击波压力场分布的影响。最后,在实测数据的基础上采用薄板样条插值方法重建了战斗部动爆冲击波超压三维可视化模型,为实战复杂环境下基于实测数据研究动爆冲击波特性提供了依据。Abstract: A method for measuring the shock wave overpressure of blasting warhead explosion based on seismic wave triggering was proposed. By the proposed method, the peak overpressure of the blast wave from dynamic explosion of a warhead can be obtained reliably. The air explosion shock waves of the blasting warhead with the target velocities of 0, 535 and 980 m/s were measured, respectively. And the measured results of the peak overpressure of the shock wave from dynamic explosion of the blasting warhead were compared with those by the empirical formula calculation. The influence of warhead velocity on the pressure field distribution of the shock wave was analyzed quantitatively. Finally, a three-dimensional visualization model for shock wave overpressure from dynamic explosion of the warhead was reconstructed by using the thin-plate-spline interpolation method. The reconstructed model can provide a basis for studying the characteristics of dynamic explosion shock wave based on the measured data in the complex environment of an actual combat.
-
表 1 试验结果与理论值对比
Table 1. Comparison between experimental and theoretical results
R/(m·kg−1/3) θ/(°) v0=0 m/s v0=535 m/s v0=980 m/s pp,e/kPa pp,d/kPa ε/% pp,e/kPa pp,d/kPa ε/% pp,e/kPa pp,d/kPa ε/% 4.71 0 321.39 317.35 1.26 434.86 355.57 18.23 483.16 389.02 19.48 45 343.49 317.35 7.61 384.34 344.15 10.46 392.65 367.28 6.46 90 342.92 317.35 7.45 285.10 317.35 −11.31 288.32 317.35 −10.07 135 335.52 317.35 5.41 270.90 291.64 −7.65 258.87 271.08 −4.72 180 320.94 317.35 1.12 228.45 281.30 −23.14 187.89 252.98 −34.64 225 294.20 317.35 −7.87 261.93 291.64 −11.34 215.23 271.08 −25.95 270 296.57 317.35 −7.01 285.98 317.35 −10.97 294.97 317.35 −7.59 315 319.73 317.35 0.74 368.50 344.15 6.61 402.27 367.28 8.70 9.41 0 112.04 104.86 6.41 127.36 111.70 12.30 149.08 117.54 21.15 45 110.61 104.86 5.19 110.62 109.67 0.86 118.86 113.76 4.30 90 100.10 104.86 −4.76 96.52 104.86 −8.65 96.21 104.86 −9.00 135 103.81 104.86 −1.02 88.96 100.16 −12.59 86.69 96.34 −11.13 180 106.88 104.86 1.89 90.35 98.25 −8.75 75.88 92.91 −22.44 225 102.12 104.86 −2.69 94.81 100.16 −5.64 88.06 96.34 −9.40 270 98.28 104.86 −6.70 99.25 104.86 −5.66 98.10 104.86 −6.90 315 111.00 104.86 5.53 118.45 109.67 7.41 123.47 113.76 7.86 14.12 0 63.87 63.04 1.31 74.87 65.85 12.05 78.23 68.24 12.77 45 63.23 63.04 0.30 66.35 65.02 2.01 69.56 66.69 4.12 90 57.72 63.04 −9.21 59.16 63.04 −6.55 59.03 63.04 −6.78 135 59.08 63.04 −6.70 57.75 61.08 −5.78 50.63 59.48 −17.48 180 60.51 63.04 −4.17 51.72 60.28 −16.56 45.73 58.04 −26.91 225 57.75 63.04 −9.16 53.69 61.08 −13.77 48.06 59.48 −23.77 270 57.78 63.04 −9.10 59.52 63.04 −5.92 57.52 63.04 −9.58 315 64.73 63.04 2.61 69.42 65.02 6.34 73.98 66.69 9.85 -
[1] 郭炜, 俞统昌, 王建灵. 空气冲击波压力的地面测量技术[C]//第三届全国爆炸力学实验技术交流会论文集. 合肥: 中国力学学会, 中国科学技术大学, 2004: 26.GUO W, YU T C, WANG J L. Ground measurement technology for air shock wave pressure [C]// Proceedings of the 3rd National Conference on Experimental Technology of Explosive Mechanics. Hefei: Chinese Society of Mechanics, University of Science and Technology of China, 2004: 26. [2] 杜红棉, 祖静. 无线冲击波超压测试系统研究 [J]. 火力与指挥控制, 2012, 37(1): 198–200. DOI: 10.3969/j.issn.1002-0640.2012.01.051.DU H M, ZU J. Research on wireless testing system of shock wave overpressure [J]. Fire Control and Command Control, 2012, 37(1): 198–200. DOI: 10.3969/j.issn.1002-0640.2012.01.051. [3] 黄正平. 爆炸与冲击电测技术[M]. 北京: 国防工业出版社, 2006: 54−55.HUANG Z P. Explosion and shock measuring technique [M]. Beijing: National Defense Industry Press, 2006: 54−55. [4] 蒋海燕, 李芝绒, 张玉磊, 等. 运动装药空中爆炸冲击波特性研究 [J]. 高压物理学报, 2017, 31(3): 286–294. DOI: 10.11858/gywlxb.2017.03.010.JIANG H Y, LI Z R, ZHANG Y L, et al. Characteristics of air blast wave field for explosive charge moving at different velocities [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 286–294. DOI: 10.11858/gywlxb.2017.03.010. [5] 陈龙明, 李志斌, 陈荣. 装药动爆冲击波特性研究 [J]. 爆炸与冲击, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029.CHEN L M, LI Z B, CHEN R. Characteristics of dynamic explosive shock wave of moving charge [J]. Explosion and Shock Waves, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029. [6] 郭亚丽, 韩焱, 王黎明. 基于广义逆算法的冲击波超压场重建方法 [J]. 爆炸与冲击, 2014, 34(6): 764–768. DOI: 10.11883/1001-1455(2014)06-0764-05.GUO Y L, HAN Y, WANG L M. Overpressure reconstruction of shock wave based on generalized inverse theory [J]. Explosion and Shock Waves, 2014, 34(6): 764–768. DOI: 10.11883/1001-1455(2014)06-0764-05.