爆炸焊接基复板间隙中的气体冲击波

李晓杰 王宇新 王小红 闫鸿浩 曾翔宇 王健

李晓杰, 王宇新, 王小红, 闫鸿浩, 曾翔宇, 王健. 爆炸焊接基复板间隙中的气体冲击波[J]. 爆炸与冲击, 2021, 41(7): 075301. doi: 10.11883/bzycj-2020-0197
引用本文: 李晓杰, 王宇新, 王小红, 闫鸿浩, 曾翔宇, 王健. 爆炸焊接基复板间隙中的气体冲击波[J]. 爆炸与冲击, 2021, 41(7): 075301. doi: 10.11883/bzycj-2020-0197
LI Xiaojie, WANG Yuxin, WANG Xiaohong, YAN Honghao, ZENG Xiangyu, WANG Jian. Gas shock waves in the gap between the base and cladding plates during explosive welding[J]. Explosion And Shock Waves, 2021, 41(7): 075301. doi: 10.11883/bzycj-2020-0197
Citation: LI Xiaojie, WANG Yuxin, WANG Xiaohong, YAN Honghao, ZENG Xiangyu, WANG Jian. Gas shock waves in the gap between the base and cladding plates during explosive welding[J]. Explosion And Shock Waves, 2021, 41(7): 075301. doi: 10.11883/bzycj-2020-0197

爆炸焊接基复板间隙中的气体冲击波

doi: 10.11883/bzycj-2020-0197
基金项目: 国家自然科学基金(12072067, 11672067)
详细信息
    作者简介:

    李晓杰(1963- ),男,博士,教授,博士生导师,robinli@dlut.edu.cn

  • 中图分类号: O389

Gas shock waves in the gap between the base and cladding plates during explosive welding

  • 摘要: 通过分析研究爆炸焊接基复板间隙中的气体运动,建立了冲击波传播的理论模型,通过理论分析和计算说明了基复板间存在气体冲击波管道效应。管道效应使复合板尾部在爆炸焊接形成前发生上翘,造成板尾部焊接能量偏大,或使尾部炸药压死,是工程中长大复合板尾部焊接质量降低或失效的主要原因。还通过建立简化模型,分析了复合板宽度、各种保护性气体和粗真空对管道效应的影响,说明了选择爆炸焊接保护气体的原则,进而使用氦气保护进行了钛钢、铝镁爆炸焊接实验验证,为气体保护爆炸焊接、真空爆炸焊接技术的进一步开发研究奠定了理论基础。
  • 图  1  爆炸焊接基复板间气体冲击波示意图

    Figure  1.  Schematic of air shock wave between the base and cladding plates during explosive welding

    图  2  基复板间的气体冲击波强度

    Figure  2.  The intensity of gas shock wave between the base and cladding plates

    图  3  复板端部运动与板长的关系(vd=2 400 m/s)

    Figure  3.  Relation between the motion of the cladding plate tail and the plate length at vd=2 400 m/s

    图  4  复板尾部运动与爆速的关系(L=4 m)

    Figure  4.  Relation between the motion of the cladding plate tail and the detonation velocity at L=4 m

    图  5  复合板宽度与间隙气体冲击波关系

    Figure  5.  Relationship of explosive clad plate width and shock waves in the gap

    图  6  不同气压下爆炸焊接基复板间管道效应的强度

    Figure  6.  Intensity of channel effect in explosive welding between base and clad plates at various atmospheric pressures

    图  7  氦气保护与空气中爆炸焊接钛钢界面金相对比((a), (c)氦气保护; (b), (d)空气)

    Figure  7.  Metallographic of the explosively-welded titanium-steel interface shielded by helium compared with one in air ((a), (c) in helium; (b), (d) in air)

    表  1  爆炸焊接气体冲击波参数(vd=2 400 m/s)

    Table  1.   Parameters for gas shock wave in explosive welding at vd=2 400 m/s

    气体种类Mγc0/(m·s−1ρ0/(kg∙m−3D/vdp/MPac/vd
    空气28.9591.4043311.292 01.218 9.1700.5558
    N228.0131.4033371.251 01.218 8.8760.3864
    CO244.0091.3132601.963 01.16713.2900.5558
    Ar39.9481.6703081.784 01.34713.9500.4694
    He 4.0021.670 9740.178 51.449 1.5910.7643
    空气0.1atm28.9591.4043310.129 21.218 0.9170.5558
     注:多原子气体绝热指数取自文献[38]实验值, 单原子气体的取理论值。
    下载: 导出CSV

    表  2  各种气体爆炸焊接的板宽效应

    Table  2.   Plate width effects of various gases in explosive welding

    气体L/w
    vd=2 000 m/svd=2 400 m/svd=3 500 m/s
    空气1.096 01.109 01.126 0
    N2 1.096 01.109 01.126 0
    CO2 1.244 01.257 01.274 0
    Ar0.887 60.891 60.897 3
    He0.798 10.821 20.857 7
    下载: 导出CSV
  • [1] 丁春聪, 邓宁嘉, 芮天安, 等. 爆炸焊接用宽幅钛板的质量控制方法[C]// 中国有色金属工业协会钛锆铪分会2015年会论文集. 陕西宝鸡: 中国有色金属工业协会, 2015: 582−587.

    DING C C, DENG N J, RUI T A, et al. Quality control method of wide titanium plate for explosive welding [C]// Proceedings of the 2015 Annual Meeting of Titanium, Zirconium and Hafnium Branch of China Nonferrous Metal Industry Association. Baoji, Shaanxi: China Nonferrous Metal Industry Association, 2015: 582−587.
    [2] 李进军, 夏雪荣, 刘凯, 等. 爆炸焊接用不锈钢复板等离子拼焊工艺的研究 [J]. 热加工工艺, 2011, 40(23): 185–189. DOI: 10.3969/j.issn.1001-3814.2011.23.062.

    LI J J, XIA X R, LIU K, et al. Research on plasma butt welding process of stainless plate used for explosive welding [J]. Hot Working Technology, 2011, 40(23): 185–189. DOI: 10.3969/j.issn.1001-3814.2011.23.062.
    [3] 臧伟, 郭龙创, 郭新虎, 等. 焊接参数对Gr1钛板焊缝组织和性能的影响 [J]. 中国钛业, 2018(3): 32–35.

    ZANG W, GUO L C, GUO X H, et al. Influence of welding parameters on microstructure and mechanical performance of Gr1 titanium plate weld [J]. China Titanium Industry, 2018(3): 32–35.
    [4] 樊科社, 赵惠, 何小松, 等. 爆炸焊接用薄钛板拼焊工艺 [J]. 四川兵工学报, 2011, 32(1): 87–90. DOI: 10.3969/j.issn.1006-0707.2011.01.028.

    FAN K S, ZHAO H, HE X S, et al. Butt welding process of titanium sheet used for explosive welding [J]. Journal of Ordnance Equipment Engineering, 2011, 32(1): 87–90. DOI: 10.3969/j.issn.1006-0707.2011.01.028.
    [5] 侯发臣. 大面积拼焊复板爆炸焊接的研究 [J]. 材料开发与应用, 1991, 6(4): 36–41. DOI: 10.19515/j.cnki.1003-1545.1991.04.005.

    HOU F C. Research of explosive welding of large area butting plate [J]. Development and Application of Materials, 1991, 6(4): 36–41. DOI: 10.19515/j.cnki.1003-1545.1991.04.005.
    [6] 王小华, 张超. 双相不锈钢2205-Q345R复合板焊接性能试验研究 [J]. 材料开发与应用, 2012, 27(1): 15–20. DOI: 10.3969/j.issn.1003-1545.2012.01.004.

    WANG X H, ZHANG C. Welding test of duplex stainless steel 2205-Q345R clad metal plate [J]. Development and Application of Materials, 2012, 27(1): 15–20. DOI: 10.3969/j.issn.1003-1545.2012.01.004.
    [7] 翟伟国, 邓光平, 侯发臣. 压力容器用Monel-400/16MnⅢ复合板制造过程中的焊接试验研究 [J]. 焊接, 2019(7): 60–64. DOI: 10.12073/j.hj.20180625001.

    ZHAI W G, DENG G P, HOU F C. Welding experiment research in the manufacturing process of Monel-400/16MnⅢ clad plate for pressure vessel [J]. Welding and Joining, 2019(7): 60–64. DOI: 10.12073/j.hj.20180625001.
    [8] 李敬伟, 高峰. 超低温状态下大面积爆炸焊接预热工艺探索[C]// 第233场中国工程科技论坛: 爆破新理论、新技术与创新成果暨第十一届中国爆破行业学术会议文集. 北京: 冶金工业出版社, 2016: 731−735.

    LI J W, GAO F. Explosive composite preheating process to explore ultra-low temperature condition C]// The 233rd China Engineering Science and Technology Forum: New Blasting Theory, New Technology and Innovative Achievements and the 11th China Explosives and Blasting Academic Conference. Beijing: Metallurgical Industry Press, 2016: 731−735.
    [9] 赵永武, 孙建, 戴和华, 等. 双相钢/钛复合板爆炸焊接成型方法: CN201510924516. X [P]. 2015-12-08.

    ZHAO Y W, SUN J, DAI H H, et al. Dual-phase steel/titanium composite board explosive welding forming method: CN201510924516. X [P]. 2015-12-08.
    [10] 王勇, 张越举, 赵恩军, 等. 金属爆炸焊接用低爆速膨化铵油炸药实验研究 [J]. 含能材料, 2009, 17(3): 326–329. DOI: 10.3969/j.issn.1006-9941.2009.03.018.

    WANG Y, ZHANG Y J, ZHAO E J, et al. Experimental study on low detonation velocity expanding ANFO explosive used in metal explosive welding [J]. Chinese Journal of Energetic Materials, 2009, 17(3): 326–329. DOI: 10.3969/j.issn.1006-9941.2009.03.018.
    [11] 邓华智, 周佐玉, 薛海洋, 等. 粉状乳化爆炸焊接专用炸药及其制备方法: CN201310454419. X [P]. 2013-09-29.

    DENG H Z, ZHOU Z Y, XUE H Y, et al. Explosive special for powdery emulsion explosive welding and preparation method thereof: CN201310454419. X [P]. 2013-09-29.
    [12] 宋锦泉, 郑炳旭, 王阳, 等. 一种用于爆炸焊接的低爆速炸药及其制备方法: CN201510159974.9 [P]. 2015-04-07.

    SONG J Q, ZHENG B X, WANG Y, et al. Low-detonation-velocity explosive for explosive welding and preparation method thereof: CN201510159974.9 [P]. 2015-04-07.
    [13] 刘自军, 周景蓉, 沈小斌, 等. 一种用于爆炸焊接炸药的稀释剂及其爆炸焊接工艺: CN201210434885.7 [P]. 2012-11-05.

    LIU Z J, ZHOU J R, SHEN X B, et al. Diluent for explosive welding explosive, and explosive welding technology thereof: CN201210434885.7 [P]. 2012-11-05.
    [14] 余燕. 低爆速乳化炸药及其在爆炸焊接中的应用[D]. 淮南: 安徽理工大学, 2013.

    YU Y. The development and application of low detonation velocity emulsion explosives in explosive welding [D]. Huainan: Anhui University of Science and Technology, 2013.
    [15] 曲桂梅, 夏金民, 汪宏祥, 等. 爆炸焊接用低爆速粉状乳化炸药研究 [J]. 工程爆破, 2016, 22(1): 42–45. DOI: 10.3969/j.issn.1006-7051.2016.01.008.

    QU G M, XIA J M, WANG H X, et al. Research on powdery emulsion explosive of low detonation velocity used in explosive welding [J]. Engineering Blasting, 2016, 22(1): 42–45. DOI: 10.3969/j.issn.1006-7051.2016.01.008.
    [16] 李晓杰, 奚进一, 董守华, 等. 一种大板幅爆炸复合板的制造方法: CN00123052.2 [P]. 2000-09-29.

    LI X J, XI J Y, DONG S H, et al. Method for making explosion cladding board with large width: CN00123052.2 [P]. 2000-09-29.
    [17] 刘润生, 张杭永, 郭龙创. 爆炸焊接装药方式对钛/钢复合板组织及性能的影响 [J]. 钛工业进展, 2014, 31(3): 34–38. DOI: 10.13567/j.cnki.issn1009-9964.2014.03.009.

    LIU R S, ZHANG H Y, GUO L C. Effect of dynamite loading modes on microstructure and properties of Ti/steel composite materials in explosive welding [J]. Titanium Industry Progress, 2014, 31(3): 34–38. DOI: 10.13567/j.cnki.issn1009-9964.2014.03.009.
    [18] 刘自军, 周景蓉, 陈寿军. 爆炸焊接布药工艺的研究[C]// 第188场中国工程科技论坛: 爆炸合成纳米金刚石和岩石安全破碎关键科学与技术. 北京: 冶金工业出版社, 2014: 324−328.

    LIU Z J, ZHOU J R, CHEN S J. Study of the technology of arranging explosive in explosive welding [C]// The 188th China Engineering Science and Technology Forum: The Key Science and Technology of Nano-diamond Explosive Synthesis and Rock Safety Fragmentation. Beijing: Metallurgical Industry Press, 2014: 324−328.
    [19] 张杭永, 郭新虎, 刘继雄, 等. 大面积钛/钢复合板的爆炸焊接工艺及其组织与性能研究 [J]. 中国钛业, 2013(3): 27–30.

    ZHANG H Y, GUO X H, LIU J X, et al. Study on the explosive welding technology and its microstructure and property of large size Ti-steel clad plate [J]. China Titanium Industry, 2013(3): 27–30.
    [20] 樊科社, 李平仓, 吴江涛, 等. 爆炸焊接法制备大面积钽/锆/钛/钢四层复合板 [J]. 兵器装备工程学报, 2017, 38(7): 148–151. DOI: 10.11809/scbgxb2017.07.031.

    FAN K S, LI P C, WU J T, et al. Research and development of Ta-Zr-Ti-steel explosive clad plate with large area [J]. Journal of Ordnance Equipment Engineering, 2017, 38(7): 148–151. DOI: 10.11809/scbgxb2017.07.031.
    [21] 蒋晓博, 刘金涛, 任江毅, 等. 一种超长复合板爆炸焊接的安装结构: CN201920487989.1 [P]. 2019-04-11.

    JIANG X B, LIU J T, REN J Y, et al. Mounting structure for explosive welding of super-long composite board: CN201920487989.1 [P]. 2019-04-11.
    [22] 邓光平, 侯发臣, 徐宇皓, 等. 一种大面积铅-钢复合板的爆炸焊接方法: CN201010592915.8 [P]. 2010-12-17.

    DENG G P, HOU F C, XU Y H, et al. Explosive welding method for large-area lead-steel composite board: CN201010592915.8 [P]. 2010-12-17.
    [23] 王典灿. 蒙乃尔合金复合钢板的爆炸焊接方法: CN200810233239.8 [P]. 2008-12-08.

    WANG D C. Explosive welding method for Monel alloy composite steel plate: CN200810233239.8 [P]. 2008-12-08.
    [24] 刘金涛, 张保奇, 韩刚. 一种水覆盖式金属复合爆炸焊接方法: CN201410704356.3 [P]. 2014-11-27.

    LIU J T, ZHANG B Q, HAN G. Water covering type explosive welding method of metal compound: CN201410704356.3 [P]. 2014-11-27.
    [25] 杨宇军, 夏金民, 黄志鸽, 等. 一种具有界面氩气保护的活泼金属爆炸焊接装置: CN201920665674.1 [P]. 2019-05-10.

    YANG Y J, XIA J M, HUANG Z G, et al. Active metal explosive welding device with interface argon protection: CN201920665674.1 [P]. 2019-05-10.
    [26] 牛爱红, 刘建伟, 杨国俊, 等. 真空态金属复合材料爆炸焊接装置: CN201621118154.1 [P]. 2016-10-13.

    NIU A H, LIU J W, YANG G J, et al. Vacuum state metallic composite explosion welding device: CN201621118154.1 [P]. 2016-10-13.
    [27] ZENG X Y, WANG Y X, LI X Q, et al. Effect of inert gas-shielding on the interface and mechanical properties of Mg/Al explosive welding composite plate [J]. Journal of Manufacturing Processes, 2019, 45: 166–175. DOI: 10.1016/J.JMAPRO.2019.07.007.
    [28] ZENG X Y, WANG Y X, LI X Q, et al. Effects of gaseous media on interfacial microstructure and mechanical properties of titanium/steel explosive welded composite plate [J]. Fusion Engineering and Design, 2019, 148: 111292. DOI: 10.1016/j.fusengdes.2019.111292.
    [29] 李晓杰, 闫鸿浩, 王小红, 等. 气体保护爆炸焊接方法: CN200810190905.4 [P]. 2008-12-30.

    LI X J, YAN H H, WANG X H, et al. Gas shielded explosive welding method: CN200810190905.4 [P]. 2008-12-30.
    [30] BATAEV I A, TANAKA S, ZHOU Q, et al. Towards better understanding of explosive welding by combination of numerical simulation and experimental study [J]. Materials and Design, 2019, 169: 107649. DOI: 10.1016/J.MATDES.2019.107649.
    [31] RICHARDSON I M, CARTON E P, VAN DER DRIFT Y, et al. Role of gas in the gap during explosive cladding [C]// IX International Symposium on Explosive Production of New Materials: Science, Technology, Business, and Innovations. Lisse, Netherlands, 2008.
    [32] 邵丙璜, 张凯. 爆炸焊接原理及其工程应用[M]. 大连: 大连工学院出版社, 1987: 202−204.

    SHAO B H, ZHANG K. Explosive welding principle and its engineering application [M]. Dalian: Dalian University of Technology Press, 1987: 202−204.
    [33] 莫非. 爆炸焊接界面热力耦合数值模拟研究[D]. 大连: 大连理工大学, 2012: 86−89.

    MO F. Thermo-mechanical coupled numerical simulation on the interface formation in explosive welding [D]. Dalian: Dalian University of Technology, 2012: 86−89.
    [34] DUBNOV L V, KHOTINA L D. Channel effect mechanism in the detonation of condensed explosives [J]. Combustion, Explosion and Shock Waves, 1966, 2(4): 59–63. DOI: 10.1007/BF01261518.
    [35] TANGUAY V, HIGGINS A J. The channel effect: coupling of the detonation and the precursor shock wave by precompression of the explosive [J]. Journal of Applied Physics, 2004, 96(9): 4894–4902. DOI: 10.1063/1.1787913.
    [36] 颜坤志. 高温空气的热力学性质 [J]. 力学进展, 1985, 15(4): 471–486. DOI: 10.6052/1000-0992-1985-4-J1985-057.

    YAN K Z. The thermodynamic properties of high temperature air [J]. Advances in Mechanics, 1985, 15(4): 471–486. DOI: 10.6052/1000-0992-1985-4-J1985-057.
    [37] 唐敬友, 伍绍珍, 王藩侯, 等. 冲击波加热的氦气与氩气对电探针导通的影响 [J]. 高压物理学报, 2000, 14(4): 285–290. DOI: 10.11858/gywlxb.2000.04.009.

    TANG J Y, WU S Z, WANG F H, et al. The effect of shock-heated gaseous helium and argon on pin shortening [J]. Chinese Journal of High Pressure Physics, 2000, 14(4): 285–290. DOI: 10.11858/gywlxb.2000.04.009.
    [38] 汤文辉, 徐彬彬, 冉宪文, 等. 高温等离子体的状态方程及其热力学性质 [J]. 物理学报, 2017, 66(3): 030505. DOI: 10.7498/aps.66.030505.

    TANG W H, XU B B, RAN X W, et al. Equations of state and thermodynamic properties of hot plasma [J]. Acta Physica Sinica, 2017, 66(3): 030505. DOI: 10.7498/aps.66.030505.
    [39] 李科斌, 李晓杰, 闫鸿浩, 等. 不同真空度下空中爆炸近场特性的数值模拟研究 [J]. 振动与冲击, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038.

    LI K B, LI X J, YAN H H, et al. Numerical simulation for near-field characteristics of air explosion under different degrees of vacuum [J]. Journal of Vibration and Shock, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038.
    [40] 曾翔宇. 爆炸焊接界面细观力学行为及缺陷控制方法的研究[D]. 大连: 大连理工大学, 2020: 95−126.

    ZENG X Y. Research on the interface Meso-mechanics behavior and micro-defects control in explosive welding [D]. Dalian: Dalian University of Technology, 2020: 95−126.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  650
  • HTML全文浏览量:  409
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 修回日期:  2020-08-17
  • 网络出版日期:  2021-07-06
  • 刊出日期:  2021-07-05

目录

    /

    返回文章
    返回