• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

乙烯储罐气体泄漏诱发蒸气云爆炸的数值模拟

王秋红 孙艺林 李鑫 蒋军成 张明广 王刘兵

王菲, 刘晶波, 韩鹏飞, 宝鑫, 王晓峰, 李述涛. 核工程钢板混凝土墙防撞击贯穿实用计算方法[J]. 爆炸与冲击, 2020, 40(10): 105101. doi: 10.11883/bzycj-2020-0020
引用本文: 王秋红, 孙艺林, 李鑫, 蒋军成, 张明广, 王刘兵. 乙烯储罐气体泄漏诱发蒸气云爆炸的数值模拟[J]. 爆炸与冲击, 2020, 40(12): 125401. doi: 10.11883/bzycj-2020-0202
WANG Fei, LIU Jingbo, HAN Pengfei, BAO Xin, WANG Xiaofeng, LI Shutao. A practical calculation method of steel plate concrete walls to resist perforation from missile impact in nuclear engineering[J]. Explosion And Shock Waves, 2020, 40(10): 105101. doi: 10.11883/bzycj-2020-0020
Citation: WANG Qiuhong, SUN Yilin, LI Xin, JIANG Juncheng, ZHANG Mingguang, WANG Liubing. Numerical simulation on gas dispersions and vapor cloud explosions induced by gas released from an ethylene storage tank[J]. Explosion And Shock Waves, 2020, 40(12): 125401. doi: 10.11883/bzycj-2020-0202

乙烯储罐气体泄漏诱发蒸气云爆炸的数值模拟

doi: 10.11883/bzycj-2020-0202
基金项目: 国家重点研发计划(2016YFC0800100);国家自然科学基金(51504190)
详细信息
    作者简介:

    王秋红(1984- ),女,博士,副教授,wangqh@xust.edu.cn

    通讯作者:

    蒋军成(1967- ),男,博士,教授,jcjiang@njtech.edu.cn

  • 中图分类号: O389; X932

Numerical simulation on gas dispersions and vapor cloud explosions induced by gas released from an ethylene storage tank

  • 摘要: 储罐会因腐蚀或人为误操作等原因引发泄漏,造成泄漏气体扩散或气云爆炸事故。为了揭示此种事故的发展过程及影响规律,应用计算流体力学软件FLACS,研究了泄漏和环境风两个主要影响因素对乙烯气体扩散及爆炸的影响。结果表明:气云扩散距离和体积随泄漏速率增加而增大;当泄漏速率低于6 kg/s时,不同泄漏方向上的气云扩散距离及体积相近;当泄漏速率高于6 kg/s时,气体泄漏扩散和气云形成过程因受到障碍物影响,随阻塞率增大,气云扩散距离减小,气云体积增加。当泄漏方向垂直于储罐组中轴线,泄漏速率为18 kg/s时,气云扩散距离最大为81.5 m;当泄漏方向平行于储罐组中轴线,泄漏速率为24 kg/s时,气云体积最大达到9 604 m3。爆炸波的冲击压力随泄漏速率升高而升高;环境风会加快可燃气体稀释,有效降低气云爆炸发生的概率,降低爆炸强度,达到爆炸压力峰值的时间更早,可使高温在更短的时间内下降。泄漏速率为24 kg/s时,与泄漏储罐紧邻的储罐表面上被冲击到的爆炸超压仅为6.88 kPa,但温度高达2 384 K,因此,为避免事故发生时的二次灾害,救援中对储罐组的冷却降温尤为重要。
  • 图  1  乙烯储罐区模型

    Figure  1.  The model of the ethylene storage tank farm

    图  2  气体泄漏扩散危险性评价参数

    Figure  2.  Parameters for evaluation of the dispersion of released gas

    图  3  不同泄漏方向上泄漏速率与气云Dmax的关系曲线

    Figure  3.  Relation curves between various leak rates and Dmax along different leak directions

    图  4  不同泄漏速率下Dmax随时间变化曲线

    Figure  4.  Variation of Dmax with time under different leak rates

    图  5  不同泄漏速率和泄漏方向上的VQ9

    Figure  5.  VQ9 at various leak rates and leak directions

    图  6  不同风速和风向下可燃气云扩散最远位置到泄漏点的距离随泄漏速率的变化

    Figure  6.  Distance from the farthest position of combustible gas cloud dispersion to its leakage source varying with leak rate at different wind speeds and directions

    图  7  不同风向和泄漏速率条件下的VQ9

    Figure  7.  VQ9 at different wind directions and leak rates

    图  8  无风条件下乙烯气云爆炸压力场与温度场分布

    Figure  8.  Pressure and temperature fields of ethylene vapor cloud explosion without wind

    图  9  不同泄漏速率下储罐表面爆炸超压随时间的变化

    Figure  9.  Explosion overpressure as a function of time on the surfaces of storage tanks at different leak rates

    图  10  不同泄漏速率下储罐表面温度随时间的变化

    Figure  10.  Temperature as a function of time on the surfaces of storage tanks at different leak rates

    表  1  不同泄漏速率下Dmax和时间的拟合方程

    Table  1.   Fitting equations of Dmax and time under different leak rates

    泄漏速率/(kg·s−1)+X 泄漏方向:y=c+ax+bx2+Y 泄漏方向:y=b ln(xa)
    cabR2abR2
    617.8740.756–0.0040.994–5.413 6.8940.990
    1221.3511.062–0.0060.996–4.179 8.8560.968
    1825.4841.226–0.0070.996–4.73110.0060.931
    2425.3211.651–0.0120.998–1.56411.9200.975
    下载: 导出CSV

    表  2  无风条件下的爆炸工况

    Table  2.   Explosion cases without wind

    泄漏方向泄漏速率/(kg·s−1)点火位置
    +X6、12、18、24点火源1
    +Y6、12、18、24点火源2
    Z6、12、18、24点火源3
    下载: 导出CSV

    表  3  有风条件下的爆炸工况

    Table  3.   Explosion cases with wind

    泄漏方向泄漏速率/(kg·s−1)环境风向点火位置
    +X24西风 (+X)点火源1
    +Y6、12、18、24南风 (+Y)点火源2
    Z18、24西风 (+X)点火源3
    Z12、18、24西南风 (+XY)点火源3
    下载: 导出CSV

    表  4  不同条件下储罐表面的最大爆炸超压以及达到最大爆炸超压的时间

    Table  4.   The maximum explosion overpressure on the tank surface and the time required to reach it under different conditions

    泄漏速率/(kg·s−1)储罐A表面储罐B表面
    无风条件有风条件无风条件有风条件
    pmax/kPatp/spmax/kPatp/spmax/kPatp/spmax/kPatp/s
    62.68101.067 20.03 99.997 83.02101.170 70.02 99.997 8
    123.28100.870 61.46100.617 63.66101.024 81.14100.603 3
    183.55100.758 62.46100.555 85.86100.894 62.98100.584 3
    244.16100.647 14.03100.539 16.88100.761 43.50100.545 4
    下载: 导出CSV

    表  5  不同条件下储罐表面的最高温度以及达到最高所需的时间

    Table  5.   The maximum temperature on the tank surface and the time required to reach it under different conditions

    泄漏速率/(kg·s−1)储罐A表面储罐B表面
    无风条件有风条件无风条件有风条件
    Tmax/Ktt/sTmax/Ktt/sTmax/Ktt/sTmax/Ktt/s
    62 384102.838 52 050102.075 52 385102.831 41 002103.030 2
    122 386102.884 62 374101.530 92 386102.706 22 096100.781 8
    182 386102.736 12 375101.012 52 386103.119 72 364100.834 3
    242 384102.730 62 384102.101 72 366102.861 52 336101.258 3
    下载: 导出CSV

    表  6  爆炸超压对建筑物的破坏作用

    Table  6.   Destructive effect of explosion overpressure on building surface

    建筑类型爆炸超压/kPa
    完全毁坏严重毁坏中等毁坏轻度毁坏轻微毁坏
    钢筋混凝土建筑80~10050~8030~5010~303~10
    多层砖结构20~40 20~3010~20 5~103~5
    少层砖结构35~45 25~3515~25 5~153~5
    木建筑物20~30 12~20 8~12 5~83~5
    工业钢架建筑物50~80 30~5020~30 5~203~5
    下载: 导出CSV
  • [1] CHANG J I, LIN C C. A study of storage tank accidents [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(1): 51–59. DOI: 10.1016/j.jlp.2005.05.015.
    [2] LIAW H J. Lessons in process safety management learned in the Kaohsiung gas explosion accident in Taiwan [J]. Process Safety Progress, 2016, 35(3): 228–232. DOI: 10.1002/prs.11818.
    [3] 朱红亚, 陈昊东, 王青松, 等. 多源重气泄漏扩散模拟研究 [J]. 中国科学技术大学学报, 2014, 44(8): 697–703. DOI: 10.3969/j.issn.0253-2778.2014.08.010.

    ZHU H Y, CHEN H D, WANG Q S, et al. Simulation research on leakage and dispersion of multi-source heavy gas [J]. Journal of University of Science and Technology of China, 2014, 44(8): 697–703. DOI: 10.3969/j.issn.0253-2778.2014.08.010.
    [4] 李萍, 丁珏, 翁培奋. 两种颗粒湍流扩散模型数值模拟气液两相流泄漏扩散的比较 [J]. 爆炸与冲击, 2005, 25(6): 541–546. DOI: 10.11883/1001-1455(2005)06-0541-06.

    LI P, DING J, WENG P F. A numerical simulation on liquid gas two phase leakage dispersion by using two particle turbulent models [J]. Explosion and Shock Waves, 2005, 25(6): 541–546. DOI: 10.11883/1001-1455(2005)06-0541-06.
    [5] 邓小娇, 姚安林, 徐涛龙, 等. 城市综合管廊燃气舱室输气管道泄漏扩散规律研究 [J]. 中国安全生产科学技术, 2019, 15(11): 83–89. DOI: 10.11731/j.issn.1673-193x.2019.11.013.

    DENG X J, YAO A L, XU T L, et al. Study on leakage and diffusion laws of gas pipeline in gas cabin of urban utility tunnel [J]. Journal of Safety Science and Technology, 2019, 15(11): 83–89. DOI: 10.11731/j.issn.1673-193x.2019.11.013.
    [6] LI X H, CHEN G M, ZHANG R R, et al. Simulation and assessment of underwater gas release and dispersion from subsea gas pipelines leak [J]. Process Safety and Environmental Protection, 2018, 119: 46–57. DOI: 10.1016/j.psep.2018.07.015.
    [7] 任少云. 开敞空间液化天然气泄漏低温扩散及爆炸传播规律 [J]. 爆炸与冲击, 2018, 38(4): 891–897. DOI: 10.11883/bzycj-2016-0323.

    REN S Y. The leakage, low temperature diffusion and explosion of liquefied natural gas in open space [J]. Explosion and Shock Waves, 2018, 38(4): 891–897. DOI: 10.11883/bzycj-2016-0323.
    [8] LOVREGLIO R, RONCHI E, MARAGKOS G, et al. A dynamic approach for the impact of a toxic gas dispersion hazard considering human behaviour and dispersion modelling [J]. Journal of Hazardous Materials, 2016, 318: 758–771. DOI: 10.1016/j.jhazmat.2016.06.015.
    [9] 黄有波, 董炳燕, 吕淑然, 等. 天然气管道泄漏孔形状对喷射火影响模拟研究 [J]. 中国安全科学学报, 2015, 25(7): 62–67. DOI: 10.16265/j.cnki.issn1003-3033.2015.07.010.

    HUANG Y B, DONG B Y, LYU S R, et al. Simulation study on influence of natural gas pipeline leak hole shape on jet fire [J]. China Safety Science Journal, 2015, 25(7): 62–67. DOI: 10.16265/j.cnki.issn1003-3033.2015.07.010.
    [10] GEXCON A S. FLACS V10.9 user’s manual [M]. Norway: Gexcon, 2019.
    [11] MIDDHA P, ICHARD M, ARNTZEN B J. Validation of CFD modelling of LH2 spread and evaporation against large-scale spill experiments [J]. International Journal of Hydrogen Energy, 2011, 36(3): 2620–2627. DOI: 10.1016/j.ijhydene.2010.03.122.
    [12] MIDDHA P, HANSEN O R. Using computational fluid dynamics as a tool for hydrogen safety studies [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 295–302. DOI: 10.1016/j.jlp.2008.10.006.
    [13] MIDDHA P, HANSEN O R, STORVIK I E. Validation of CFD-model for hydrogen dispersion [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 1034–1038. DOI: 10.1016/j.jlp.2009.07.020.
    [14] HANSEN O R, GAVELLI F, ICHARD M, et al. Validation of FLACS against experimental data sets from the model evaluation database for LNG vapor dispersion [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 857–877. DOI: 10.1016/j.jlp.2010.08.005.
    [15] SCHLEDER A M, MARTINS M R. Experimental data and CFD performance for CO2 cloud dispersion analysis [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 688–699. DOI: 10.1016/j.jlp.2016.03.027.
    [16] FIATES J, SANTOS R R C, NETO F F, et al. An alternative CFD tool for gas dispersion modelling of heavy gas [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 583–593. DOI: 10.1016/j.jlp.2016.08.002.
    [17] WANG Q, SUN Y, LI X, et al. Process of natural gas explosion in linked vessels with three structures obtained using numerical simulation [J]. Processes, 2020, 8(1): 52. DOI: 10.3390/pr8010052.
    [18] 文虎, 高慧慧, 王秋红, 等. 泄爆口强度对管内天然气爆炸流场的影响仿真 [J]. 天然气工业, 2019, 39(8): 126–136. DOI: 10.3787/j.issn.1000-0976.2019.08.016.

    WEN H, GAO H H, WANG Q H, et al. A simulation study on the influence of vent port strength on the natural gas explosion flow field in line pipes [J]. Natural Gas Industry, 2019, 39(8): 126–136. DOI: 10.3787/j.issn.1000-0976.2019.08.016.
    [19] LI J D, MA G W, ABDEL-JAWAD M, et al. Gas dispersion risk analysis of safety gap effect on the innovating FLNG vessel with a cylindrical platform [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 304–316. DOI: 10.1016/j.jlp.2016.01.005.
    [20] LI J, MA G, HAO H, et al. Gas explosion analysis of safety gap effect on the innovating FLNG vessel with a cylindrical platform [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 263–274. DOI: 10.1016/j.jlp.2016.09.019.
    [21] LI J, MA G, HAO H, et al. Optimal blast wall layout design to mitigate gas dispersion and explosion on a cylindrical FLNG platform [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 481–492. DOI: 10.1016/j.jlp.2017.05.025.
    [22] HUANG Y, MA G, LI J. Multi-level explosion risk analysis (MLERA) for accidental gas explosion events in super-large FLNG facilities [J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 242–254. DOI: 10.1016/j.jlp.2016.11.004.
    [23] 王志寰, 李成兵, 周宁. 大型LNG接收站泄漏事故灾害效应分析与预测 [J]. 天然气工业, 2019, 39(5): 145–153. DOI: 10.3787/j.issn.1000-0976.2019.05.018.

    WANG Z H, LI C B, ZHOU N. Analysis and prediction on the disaster effect of leakage accidents at large LNG receiving stations [J]. Natural Gas Industry, 2019, 39(5): 145–153. DOI: 10.3787/j.issn.1000-0976.2019.05.018.
    [24] BJEKETVEDT D, BAKKE J R, Van WINGERDEN K. Gas explosion handbook [J]. Journal of Hazardous Materials, 1997, 52(1): 1–150. DOI: 10.1016/S0304-3894(97)81620-2.
    [25] 杨国刚, 丁信伟, 毕明树, 等. 燃料浓度对可燃气云爆炸影响的实验研究与数值模拟 [J]. 石油学报(石油加工), 2004, 20(5): 53–58. DOI: 10.3969/j.issn.1001-8719.2004.05.010.

    YANG G G, DING X W, BI M S, et al. Experimental and simulation study of the effect of fuel concentration on flammable vapor cloud explosion [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2004, 20(5): 53–58. DOI: 10.3969/j.issn.1001-8719.2004.05.010.
    [26] ZHANG S H, ZHANG Q. Influence of geometrical shapes on unconfined vapor cloud explosion [J]. Journal of Loss Prevention in the Process Industries, 2018, 52: 29–39. DOI: 10.1016/j.jlp.2018.01.004.
    [27] HANSEN O R, GAVELLI F, DAVIS S G, et al. Equivalent cloud methods used for explosion risk and consequence studies [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(3): 511–527. DOI: 10.1016/j.jlp.2012.07.006.
    [28] 李炜, 槐文信. 浮力射流的理论及应用[M]. 北京: 科学出版社, 1997.
    [29] ATKINSON G, COWPE E, HALLIDAY J, et al. A review of very large vapour cloud explosions: cloud formation and explosion severity [J]. Journal of Loss Prevention in the Process Industries, 2017, 48: 367–375. DOI: 10.1016/j.jlp.2017.03.021.
    [30] LV D, TAN W, LIU L Y, et al. Research on maximum explosion overpressure in LNG storage tank areas [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 162–170. DOI: 10.1016/j.jlp.2017.06.010.
    [31] MA G W, LI J D, ABDEL-JAWAD M. Accuracy improvement in evaluation of gas explosion overpressures in congestions with safety gaps [J]. Journal of Loss Prevention in the Process Industries, 2014, 32: 358–366. DOI: 10.1016/j.jlp.2014.10.007.
  • 期刊类型引用(1)

    1. 王武,杨军,王安宝,周布奎,李晓军. 基于能量法的双钢板混凝土遮弹层设计计算方法研究. 爆炸与冲击. 2023(11): 154-167 . 本站查看

    其他类型引用(9)

  • 加载中
推荐阅读
侵彻爆炸联合作用下超高性能混凝土遮弹层设计
程月华 等, 爆炸与冲击, 2025
典型战斗部侵彻爆炸下块石混凝土的遮弹层设计
吴昊 等, 爆炸与冲击, 2025
近爆条件下高强钢板的抗爆性能与几何参数影响规律研究
王宇相 等, 爆炸与冲击, 2025
火灾下双钢板-混凝土组合墙抗冲击机理分析与挠度预测
杨耀堂 等, 爆炸与冲击, 2024
弹体侵彻混凝土的优化模型及可视化仿真研究
苏永超 等, 高压物理学报, 2025
近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能
赵春风 等, 高压物理学报, 2024
动能块超高速碰撞多层防护结构的毁伤特性数值模拟
杨玉好 等, 高压物理学报, 2022
Synthesis of znwo4/niwo4 photocatalysts and their application in tetracycline hydrochloride degradation and antibacterial activities
Wang, Xuejiao et al., JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2024
Dynamic response mechanism of thin-walled plate under confined and unconfined blast loads
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024
Calculation methods for the jacking force of a rectangular pipe jacking tunnel: overview and prospects
JOURNAL OF PIPELINE SYSTEMS ENGINEERING AND PRACTICE
Powered by
图(10) / 表(6)
计量
  • 文章访问数:  1929
  • HTML全文浏览量:  1017
  • PDF下载量:  466
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-01-14
  • 修回日期:  2020-09-11
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回