长期持荷工况下钢管混凝土构件的抗撞击性能

王文达 陈振福 纪孙航

王文达, 陈振福, 纪孙航. 长期持荷工况下钢管混凝土构件的抗撞击性能[J]. 爆炸与冲击, 2021, 41(8): 083106. doi: 10.11883/bzycj-2020-0204
引用本文: 王文达, 陈振福, 纪孙航. 长期持荷工况下钢管混凝土构件的抗撞击性能[J]. 爆炸与冲击, 2021, 41(8): 083106. doi: 10.11883/bzycj-2020-0204
WANG Wenda, CHEN Zhenfu, JI Sunhang. Impact resistance of concrete-filled steel tubular members under long-term loading[J]. Explosion And Shock Waves, 2021, 41(8): 083106. doi: 10.11883/bzycj-2020-0204
Citation: WANG Wenda, CHEN Zhenfu, JI Sunhang. Impact resistance of concrete-filled steel tubular members under long-term loading[J]. Explosion And Shock Waves, 2021, 41(8): 083106. doi: 10.11883/bzycj-2020-0204

长期持荷工况下钢管混凝土构件的抗撞击性能

doi: 10.11883/bzycj-2020-0204
基金项目: 国家自然科学基金(51778274);甘肃省高等学校协同创新团队项目(2018C-08);兰州市科技计划(2019-1-61)
详细信息
    作者简介:

    王文达(1976- ),男,博士,教授,wangwd@lut.edu.cn

  • 中图分类号: O383.3; TU398

Impact resistance of concrete-filled steel tubular members under long-term loading

  • 摘要: 为研究长期荷载作用对钢管混凝土构件抗撞击性能的影响,利用有限元软件ABAQUS建立了长期荷载与侧向撞击荷载作用的耦合分析模型以及撞击后剩余受压承载力计算模型。对比了一次加载模式下和长期荷载作用下构件遭受撞击的动力响应,采用剩余受压承载力系数量化分析了两种加载模式下构件的剩余受压承载力。典型的有限元模型分析表明:相较于一次加载模式,考虑长期荷载作用时撞击力峰值和平台值下降,撞击时间延长,构件跨中挠度增大,但撞击力对构件做功基本保持不变;考虑长期荷载作用的撞击过程轴向荷载做功比一次加载模式增大,增加的功主要通过外钢管的塑性变形耗散,核心混凝土贡献较小;长期荷载作用下构件的剩余受压承载力系数均低于一次加载模式,撞击条件相同时,一次加载模式下撞击后可以继续承载的构件在考虑长期荷载作用时可能会丧失承载能力;提高含钢率和钢材屈服强度、降低长期荷载比可有效减小长期荷载对构件抗撞击性能的不利影响。
  • 图  1  钢管混凝土柱持荷过程

    Figure  1.  Load history of a concrete filled steel tubular column

    图  2  考虑长期荷载作用时构件加载路径示意图

    Figure  2.  A schematic loading path of the concrete filled steel tubular column bearing a long-term load

    图  3  考虑长期荷载作用与否的混凝土应力-应变关系

    Figure  3.  Stress-strain curves of concrete with and without long-term loading

    图  4  网格划分及边界条件

    Figure  4.  Boundary conditions and element division

    图  5  钢管混凝土构件撞击试验与计算撞击力时程曲线对比

    Figure  5.  Comparison of impact force-time history curves of concrete-filled steel tubular members between tested and calculated results

    图  6  钢管混凝土构件撞击试验与计算位移时程曲线对比

    Figure  6.  Comparison of displacement-time history curves of concrete-filled steel tubular members between tested and calculated results

    图  7  构件NC-0.3-6试验与模拟破坏形态对比[7]

    Figure  7.  Comparison between tested and calculated failure modes of member NC-0.3-6[7]

    图  8  钢管混凝土构件轴向荷载-应变关系曲线试验与计算结果对比[22]

    Figure  8.  Comparison of load-strain curves of CFST members between tested and calculated results[22]

    图  9  H型钢构件荷载-位移曲线试验与计算结果对比[23]

    Figure  9.  Comparison between tested and calculated curves of load-displacement of H-section steel members[23]

    图  10  撞击力和位移时程曲线以及撞击力与跨中位移关系曲线

    Figure  10.  Time history curves of impact and displacement as well as relation of impact force and displacement

    图  11  落锤动能以及构件各部分塑性耗散能时程曲线

    Figure  11.  Time history curves of kinetic energy of drop hammer and energy dissipation of the components of CFST members

    图  12  钢管混凝土构件轴向荷载-位移曲线

    Figure  12.  Axial load-displacement curves of CFST members

    图  13  不同长期荷载比下跨中极限挠度及剩余受压承载力系数

    Figure  13.  The mid-span deflections and residual compressive strength coefficients at different long-term load ratios

    图  14  不同混凝土强度下跨中极限挠度及剩余受压承载力系数

    Figure  14.  The mid-span deflections and residual compressive strength coefficients at different concrete strengths

    图  15  不同钢材屈服强度下跨中极限挠度及剩余受压承载力系数

    Figure  15.  The mid-span deflections and residual compressive strength coefficients at different steel yield strengths

    图  16  不同长细比下跨中极限挠度及剩余受压承载力系数

    Figure  16.  The mid-span deflections and residual compressive strength coefficients at different slenderness ratios

    图  17  不同含钢率下跨中极限挠度及剩余受压承载力系数

    Figure  17.  The mid-span deflections and residual compressive strength coefficients at different steel ratios

    表  1  撞击试验构件基本参数

    Table  1.   Basic parameters of impact test members

    编号d(b) /mmδa/mml/mmF/kNnm/kgv/(m·s−1tc/teΔc/Δe来源
    NC-0.15-61002.451 8001000.15238.1610.8441.020.97文献[7]
    NC-0.3-62000.301.120.95
    TSC51142.001 8003550.50206.65 9.3911.090.95文献[13]
    SRC53150.50206.651.181.06
    CC11803.651 940 00 465.00 9.2101.061.00文献[8]
    CC21803.651 940 00 920.00 6.4001.070.96
    CS31803.652 400 00 465.00 7.9700.981.05
    下载: 导出CSV
  • [1] 新浪新闻. 阿根廷首都城铁出轨至少49死600伤 [EB/OL]. (2012-2-23)[2020-06-18]. http://news.sina.com.cn/w/p/2012-02-23/033523976508.shtml.
    [2] 王文达, 邹爱华, 张鹏鹏. 长期荷载作用下矩形钢管混凝土轴压短柱力学性能 [J]. 公路交通科技, 2011, 28(7): 73–78. DOI: 10.3969/j.issn.1002-0268.2011.07.013.

    WANG W D, ZOU A H, ZHANG P P. Behavior of rectangular CFST axial compressive stub column under long-term loading [J]. Journal of Highway and Transportation Research and Development, 2011, 28(7): 73–78. DOI: 10.3969/j.issn.1002-0268.2011.07.013.
    [3] 韩林海, 刘威. 长期荷载作用对圆钢管混凝土压弯构件力学性能影响的研究 [J]. 土木工程学报, 2002, 35(2): 8–19. DOI: 10.3321/j.issn:1000-131X.2002.02.002.

    HAN L H, LIU W. The effects of long-time loading on the behavior of concrete-filled steel tubular member [J]. China Civil Engineering Journal, 2002, 35(2): 8–19. DOI: 10.3321/j.issn:1000-131X.2002.02.002.
    [4] WANG R, HAN L H, HOU C C. Behavior of Concrete Filled Steel Tubular (CFST) members under lateral impact: experiment and FEA model [J]. Journal of Constructional Steel Research, 2013, 80: 188–201. DOI: 10.1016/j.jcsr.2012.09.003.
    [5] 王潇宇, DEMARTINO C, 徐金俊, 等. 侧向冲击作用下钢管混凝土柱动力响应试验研究及计算方法 [J]. 土木工程学报, 2017, 50(12): 28–36. DOI: 10.15951/j.tmgcxb.2017.12.004.

    WANG X Y, DEMARTINO C, XU J J, et al. Dynamic response of concrete filled steel tube column under lateral impact load: experimental study and calculation method [J]. China Civil Engineering Journal, 2017, 50(12): 28–36. DOI: 10.15951/j.tmgcxb.2017.12.004.
    [6] BAMBACH M R. Validation of a general design procedure for the transverse impact capacity of steel columns [J]. Journal of Constructional Steel Research, 2018, 150: 153–161. DOI: 10.1016/j.jcsr.2018.08.021.
    [7] YANG Y F, ZHANG Z C, FU F. Experimental and numerical study on square RACFST members under lateral impact loading [J]. Journal of Constructional Steel Research, 2015, 111: 43–56. DOI: 10.1016/j.jcsr.2015.04.004.
    [8] HAN L H, HOU C C, ZHAO X L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading [J]. Journal of Constructional Steel Research, 2014, 92: 25–39. DOI: 10.1016/j.jcsr.2013.09.003.
    [9] 史艳莉, 纪孙航, 王文达, 等. 高温作用下钢管混凝土构件侧向撞击性能 [J]. 爆炸与冲击, 2020, 40(4): 043303. DOI: 10.11883/bzycj-2019-0293.

    SHI Y L, JI S H, WANG W D, et al. The lateral impact performance of concrete-filled steel tubular (CFST) members at high temperatures [J]. Explosion and Shock Waves, 2020, 40(4): 043303. DOI: 10.11883/bzycj-2019-0293.
    [10] XIAN W, WANG W D, WANG R, et al. Dynamic response of steel-reinforced concrete-filled circular steel tubular members under lateral impact loads [J]. Thin-Walled Structures, 2020, 151: 106736. DOI: 10.1016/j.tws.2020.106736.
    [11] 史艳莉, 鲜威, 王蕊, 等. 方套圆中空夹层钢管混凝土组合构件横向撞击试验研究 [J]. 土木工程学报, 2019, 52(12): 11–21, 35. DOI: 10.15951/j.tmgcxb.2019.12.002.

    SHI Y L, XIAN W, WANG R, et al. Experimental study on circular-in-square concrete filled double-skin steel tubular (CFDST) composite components under lateral impact [J]. China Civil Engineering Journal, 2019, 52(12): 11–21, 35. DOI: 10.15951/j.tmgcxb.2019.12.002.
    [12] 史艳莉, 何佳星, 王文达, 等. 内配圆钢管的圆钢管混凝土构件耐撞性能分析 [J]. 振动与冲击, 2019, 38(9): 123–132. DOI: 10.13465/j.cnki.jvs.2019.09.017.

    SHI Y L, HE J X, WANG W D, et al. Anti-impact performance analysis for circular CFST members with inner circular steel tube [J]. Journal of Vibration and Shock, 2019, 38(9): 123–132. DOI: 10.13465/j.cnki.jvs.2019.09.017.
    [13] 朱翔, 陆新征, 杜永峰, 等. 新型复合柱抗冲击试验研究及有限元分析 [J]. 工程力学, 2016, 33(8): 158–166, 220. DOI: 10.6052/j.issn.1000-4750.2015.03.0153.

    ZHU X, LU X Z, DU Y F, et al. Experimental study and finite element analysis of impact resistance of novel composite columns [J]. Engineering Mechanics, 2016, 33(8): 158–166, 220. DOI: 10.6052/j.issn.1000-4750.2015.03.0153.
    [14] WANG R, HAN L H, ZHAO X L, et al. Experimental behavior of concrete filled double steel tubular (CFDST) members under low velocity drop weight impact [J]. Thin-Walled Structures, 2015, 97: 279–295. DOI: 10.1016/j.tws.2015.09.009.
    [15] WANG R, HAN L H, ZHAO X L, et al. Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact [J]. Thin-Walled Structures, 2016, 101: 129–140. DOI: 10.1016/j.tws.2015.12.006.
    [16] 章琪, 蒋庆, 陆新征. 侧向冲击对钢管混凝土受压承载力影响研究 [J]. 结构工程师, 2013, 29(3): 59–64. DOI: 10.3969/j.issn.1005-0159.2013.03.011.

    ZHANG Q, JIANG Q, LU X Z. Lateral impact effects on the compressive strength of concrete filled steel tubes [J]. Structural Engineers, 2013, 29(3): 59–64. DOI: 10.3969/j.issn.1005-0159.2013.03.011.
    [17] HOU C C, HAN L H. Life-cycle performance of deteriorated concrete-filled steel tubular (CFST) structures subject to lateral impact [J]. Thin-Walled Structures, 2018, 132: 362–374. DOI: 10.1016/j.tws.2018.08.025.
    [18] ZHANG X Y, CHEN Y, WAN J, et al. Tests on residual ultimate bearing capacity of square CFST columns after impact [J]. Journal of Constructional Steel Research, 2018, 147: 27–42. DOI: 10.1016/j.jcsr.2018.03.039.
    [19] 韩林海. 钢管混凝土结构-理论与实践[M]. 3版. 北京: 科学出版社, 2016.
    [20] 陈俊岭, 舒文雅, 李金威. Q235钢材在不同应变率下力学性能的试验研究 [J]. 同济大学学报(自然科学版), 2016, 44(7): 1071–1075. DOI: 10.11908/j.issn.0253-374x.2016.07.014.

    CHEN J L, SHU W Y, LI J W. Experimental study on dynamic mechanical property of Q235 steel at different strain rates [J]. Journal of Tongji University (Natural Science), 2016, 44(7): 1071–1075. DOI: 10.11908/j.issn.0253-374x.2016.07.014.
    [21] ACI Committee. Prediction of creep, shrinkage, and temperature effects in concrete structures: 209R-1992[S]. Detroit: ACI Committee, 1992.
    [22] 赖秀英. 钢管混凝土拱桥收缩、徐变效应研究[D]. 福州: 福州大学, 2016: 72−77.
    [23] 崔娟玲, 郭昭胜, 王蕊, 等. 热轧H型钢柱侧向冲击试验研究 [J]. 振动与冲击, 2014, 33(18): 133–139. DOI: 10.13465/j.cnki.jvs.2014.18.022.

    CUI J L, GUO Z S, WANG R, et al. Tests for behavior of a hot rolled H-shaped steel column under lateral impact [J]. Journal of Vibration and Shock, 2014, 33(18): 133–139. DOI: 10.13465/j.cnki.jvs.2014.18.022.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  193
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-19
  • 修回日期:  2020-09-09
  • 网络出版日期:  2021-07-08
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回