• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

不同典型形状落石冲击砂垫层试验与量纲分析

闫鹏 方秦 张锦华 张亚栋 陈力 范俊余

文彦博, 胡亮亮, 秦健, 张延泽, 王金相, 刘亮涛, 黄瑞源. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究[J]. 爆炸与冲击, 2022, 42(5): 053203. doi: 10.11883/bzycj-2021-0206
引用本文: 闫鹏, 方秦, 张锦华, 张亚栋, 陈力, 范俊余. 不同典型形状落石冲击砂垫层试验与量纲分析[J]. 爆炸与冲击, 2021, 41(7): 073303. doi: 10.11883/bzycj-2020-0219
WEN Yanbo, HU Liangliang, QIN Jian, ZHANG Yanze, WANG Jinxiang, LIU Liangtao, HUANG Ruiyuan. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion[J]. Explosion And Shock Waves, 2022, 42(5): 053203. doi: 10.11883/bzycj-2021-0206
Citation: YAN Peng, FANG Qin, ZHANG Jinhua, ZHANG Yadong, CHEN Li, FAN Junyu. Experimental study of different typical shape falling-rocks impacting on the sand cushion and dimensionless analysis[J]. Explosion And Shock Waves, 2021, 41(7): 073303. doi: 10.11883/bzycj-2020-0219

不同典型形状落石冲击砂垫层试验与量纲分析

doi: 10.11883/bzycj-2020-0219
基金项目: 国家自然科学基金(51778623)
详细信息
    作者简介:

    闫 鹏(1991- ),男,博士研究生,yanpeng007@126.com

    通讯作者:

    张锦华(1981- ),男,博士,教授,zhangjh@seu.edu.cn

  • 中图分类号: O347; U213.1

Experimental study of different typical shape falling-rocks impacting on the sand cushion and dimensionless analysis

  • 摘要: 开展了球形、锥形和平头3种典型形状落石撞击垫层的冲击力及侵入深度的试验研究。结果表明,落石形状对冲击试验结果有显著影响:相同条件下,平头落石的冲击力最大,侵入深度和冲击力峰值时间最短,锥形落石反之,而球形落石介于两者之间。采用无量纲化分析方法,将落石的质量、速度、形状、特征尺寸,垫层的强度、密度转换为无量纲强度冲击因子I、密度冲击因子λ和形状冲击因子ψ,并对冲击因子与侵入深度的试验数据进行了相关性分析,结果表明:(1)冲击因子Iλ在决定最终侵深zm/d 中所起到的作用比较相近;(2)冲击因子Iλ对侵入深度的影响分析表明,Iλ的相对独立性较强,相互影响较小,在不同的λ值下,I对侵入深度的影响规律基本一致。
  • 图  1  落石冲击试验系统

    Figure  1.  Rockfall impact test system

    图  2  落石冲击试验数据测量方法

    Figure  2.  Measurement method of rockfall impact test data

    图  3  试验所用落石形状及尺寸

    Figure  3.  Shapes and sizes of the falling rocks used in the test

    图  4  砂土垫层强度静力载荷试验及结果

    Figure  4.  Static load test and results of strength of sand cushion

    图  5  不同形状落石侵入深度对比

    Figure  5.  Comparison of the penetration depth of falling rocks with different shapes

    图  6  不同形状下落石冲击力时程曲线

    Figure  6.  Time history curves of impact force for falling rocks with different shapes

    图  7  不同形状落石相对冲击力时程曲线

    Figure  7.  Time history curves of relative impact force for falling rocks with different shapes

    图  8  落石形状对冲击力、峰值时间和冲量的影响

    Figure  8.  Effects of falling rock’s shape on impact force, peak time and impulse

    图  9  不同典型形状落石冲击成坑形状

    Figure  9.  Different impact craters formed by different typical falling rocks

    图  10  椭球形落石的整体形状变化范围

    Figure  10.  Variation of the overall shape of the ellipsoid falling rocks

    图  11  无量纲冲击因子与无量纲侵入深度之间的相关性

    Figure  11.  Correlation between dimensionless impact factors and penetration depths

    图  12  不同形状落石无量纲侵入深度的拟合曲线

    Figure  12.  Fitting curves of the dimensionless penetration depths of the blocks

    表  1  球形落石冲击砂垫层试验工况

    Table  1.   Conditions of impact test by spherical falling rocks

    编号m/kgv0/(m·s−1H/md/mIλzm/d
    S-01104.431.000.121.735.221.45
    S-02106.262.000.123.475.221.88
    S-03108.854.000.126.935.222.67
    S-041013.289.000.1215.605.223.46
    S-05504.431.000.250.962.891.00
    S-06506.262.000.251.922.891.15
    S-07508.854.000.253.832.891.47
    S-085013.289.000.258.632.891.84
    S-091004.431.000.360.641.930.71
    S-101006.262.000.361.281.930.76
    S-111008.854.000.362.571.931.06
    S-1210013.289.000.365.781.931.17
    下载: 导出CSV

    表  2  锥形落石冲击砂垫层试验工况

    Table  2.   Conditions of impact test by conical falling rocks

    编号m/kgv0/(m·s−1H/md/mIλzm/d
    C-01104.401.000.121.735.221.89
    C-02106.302.000.123.475.222.00
    C-03108.904.000.126.935.222.75
    C-04502.400.300.250.292.890.76
    C-05506.302.000.251.922.891.06
    C-06508.904.000.253.832.891.27
    C-075013.309.000.258.632.891.59
    C-085017.1015.000.2514.382.892.16
    下载: 导出CSV

    表  3  平头落石冲击砂垫层试验工况

    Table  3.   Conditions of impact test by flat falling rocks

    编号m/kgv0/(m·s−1H/md/mIλzm/d
    F-01504.401.000.250.962.890.52
    F-02506.302.000.251.922.890.68
    F-03508.904.000.253.832.890.86
    F-045013.309.000.258.632.891.06
    F-05506.302.000.301.111.670.37
    F-065013.309.000.304.991.670.68
    下载: 导出CSV

    表  4  无量纲冲击因子之间及与侵入深度的相关性

    Table  4.   Correlation between dimensionless impact factors and penetration depths

    冲击因子Iλzm/d
    I1.000.240.71
    λ0.241.000.77
    zm/d0.710.771.00
    下载: 导出CSV

    表  5  不同形状落石3种拟合公式的拟合参数比较

    Table  5.   Comparison of parameters of three fitting formulas for falling rocks with different shapes

    落石形状
    zm/d=ln(1+CI/λ)拟合参数
    AC
    球形0.1811.67
    锥形0.1247.64
    平头0.1015.09
    下载: 导出CSV
  • [1] JACQUEMOUD J. Swiss guideline for the design of protection galleries: background, safety concept and case histories [C] // Impact Load by Rock Falls and Design of Protection Structures, Joint Japan-Swiss Scientific Seminar. Kanazawa, Japan: Kanazawa University, 1999.
    [2] 山口悟, 木幡行宏, 小室雅人, 等. 敷砂あるいは砕石緩衝材の緩衝特性に関する大型重錘落下衝撃実験 [C] // 構造工学論文集, 2014, 60: 983–995.
    [3] CALVETTI F, PRISCO C, VECCHIOTTI M. Experimental and numerical study of rock-fall impacts on granular soils [J]. Rivista Italiana di Geotecnica, 2005, 4: 95–109.
    [4] GERBER W, VOLKWEIN A. Impact loads of falling rocks on granular material [C] // Third Euro Mediterranean Symposium on Advances in Geomaterials and Structures, 2010, 10: 337–342.
    [5] 袁进科, 黄润秋, 裴向军. 滚石冲击力测试研究 [J]. 岩土力学, 2014, 35(1): 48–54. DOI: 10.16285/j.rsm.2014.01.011.

    YUAN J K, HUANG R Q, PEI X J. Test research on rockfall impact force [J]. Rock and Soil Mechanics, 2014, 35(1): 48–54. DOI: 10.16285/j.rsm.2014.01.011.
    [6] YU B, YI W, ZHAO H B. Experimental study on the maximum impact force by rock fall [J]. Landslides, 2018, 15(2): 233–242. DOI: 10.1007/s10346-017-0876-x.
    [7] 何思明, 沈均, 吴永. 滚石冲击荷载下棚洞结构动力响应 [J]. 岩土力学, 2011, 32(3): 781–788. DOI: 10.16285/j.rsm.2011.03.033.

    HE S M, SHEN J, WU Y. Rock shed dynamic response to impact of rock-fall [J]. Rock and Soil Mechanics, 2011, 32(3): 781–788. DOI: 10.16285/j.rsm.2011.03.033.
    [8] FITYUS S G, GIACOMINI A, BUZZI O. The significance of geology for the morphology of potentially unstable rocks [J]. Engineering Geology, 2013, 162: 43–52. DOI: 10.1016/j.enggeo.2013.05.007.
    [9] 重庆交通科研设计院. 公路隧道设计规范: JTG D70–2004 [S]. 北京: 人民交通出版社, 2004.
    [10] 铁道部第二设计院. 铁路工程设计技术手册(隧道) [M]. 北京: 人民铁道出版社, 1978.
    [11] 杨其新, 关宝树. 落石冲击力计算方法的试验研究 [J]. 铁道学报, 1996, 18(1): 101–106. DOI: 10.3321/j.issn:1001-8360.1996.01.017.

    YANG Q X, GUAN B S. Test and research on calculating method of falling stone impulsive force [J]. Journal of the China Railway Society, 1996, 18(1): 101–106. DOI: 10.3321/j.issn:1001-8360.1996.01.017.
    [12] Janpan Road Association. Manual for anti-impact structures against falling rocks [M]. Tokyo, Japan: Maruzen Publisher, 2000.
    [13] LABIOUSE V, DESCOEUDRES F, MONTANI S. Experimental study of rock sheds impacted by rock blocks [J]. Structural Engineering International, 1996, 6(3): 171–176. DOI: 10.2749/101686696780495536.
    [14] ASTRA S B B. Einwirkungen infolge Steinschlags auf Schutzgalerien [M]. Bern: Swiss Federal Roads Office and Swiss Federal Railways, 2008.
    [15] PICHLER B, HELLMICH C, MANG H A. Impact of rocks onto gravel design and evaluation of experiments [J]. International Journal of Impact Engineering, 2005, 31(5): 559–578. DOI: 10.1016/j.ijimpeng.2004.01.007.
    [16] MOUGIN J P, PERROTIN P, MOMMESSIN M, et al. Rock fall impact on reinforced concrete slab: an experimental approach [J]. International Journal of Impact Engineering, 2005, 31(2): 169–183. DOI: 10.1016/j.ijimpeng.2003.11.005.
    [17] SCHELLENBERG K, KHASRAGHY G S, VOGEL T, et al. Impact behavior of reinforced concrete slabs subjected to rock fall loading [C] // SUSI 2008. Southampton: WIT Press, 2008, 98: 25–34.
    [18] DELHOMME F, MOMMESSIN M, MOUGIN J P, et al. Simulation of a block impacting a reinforced concrete slab with a finite element model and a mass-spring system [J]. Engineering Structures, 2007, 29(11): 2844–2852. DOI: 10.1016/j.engstruct.2007.01.017.
    [19] CHIKATAMARLA R, LAUE J, SPRINGMAN S M. Rockfall impact on protection galleries [C] // The Second International Conference of Structural Engineering Mechanics and Computations. Cape Town, South Africa, 2004: 1139–1144.
    [20] PERERA S, LAM N, PATHIRANA M, et al. Deterministic solutions for contact force generated by impact of windborne debris [J]. International Journal of Impact Engineering, 2016, 91: 126–141. DOI: 10.1016/j.ijimpeng.2016.01.002.
    [21] 唐建辉. 落石冲击对隧道明洞结构的影响研究 [D]. 成都: 西南交通大学, 2013.
    [22] 陈驰, 刘成清, 陈林雅, 等. 落石作用于钢筋混凝土棚洞的冲击力研究 [J]. 公路交通科技, 2015, 32(1): 102–109. DOI: 10.3969/j.issn.1002-0268.2015.01.017.

    CHEN C, LIU C Q, CHEN L Y, et al. Study on impact force of rock-fall onto rock shed tunnel [J]. Journal of Highway and Transportation Research and Development, 2015, 32(1): 102–109. DOI: 10.3969/j.issn.1002-0268.2015.01.017.
    [23] SHEN W G, ZHAO T, DAI F, et al. DEM analyses of rock block shape effect on the response of rockfall impact against a soil buffering layer [J]. Engineering Geology, 2019, 249: 60–70. DOI: 10.1016/j.enggeo.2018.12.011.
    [24] CALVETTI F, DI PRISCO C. Rockfall impacts on sheltering tunnels: real-scale experiments [J]. Géotechnique, 2012, 62(10): 865–876. DOI: 10.1680/geot.9.p.036.
    [25] YAN P, ZHANG J, FANG Q, et al. Numerical simulation of the effects of falling rock’s shape and impact pose on impact force and response of RC slabs [J]. Construction and Building Materials, 2018, 160: 497–504. DOI: 10.1016/j.conbuildmat.2017.11.087.
    [26] KAWAHARA S, MURO T. Effects of dry density and thickness of sandy soil on impact response due to rockfall [J]. Journal of Terramechanics, 2006, 43(3): 329–340. DOI: 10.1016/j.jterra.2005.05.009.
    [27] 唐红梅, 鲜学福, 王林峰, 等. 基于小波变换的碎石土垫层落石冲击回弹系数试验 [J]. 岩土工程学报, 2012, 34(7): 1278–1282.

    TANG H M, XIAN X F, WANG L F, et al. Coefficient of resilience for rock fall onto gravel soil cushion based on wavelet transform theory [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1278–1282.
    [28] JONES N. Structural impact [M]. London: Cambridge University Press, 1989.
    [29] BUCKINGHAM E. On physically similar systems; illustrations of the use of dimensional equations [J]. Physical Review, 1914, 4(4): 345–376. DOI: 10.1103/physrev.4.345.
    [30] SEGUIN A, BERTHO Y, MARTINEZ F, et al. Experimental velocity fields and forces for a cylinder penetrating into a granular medium [J]. Physical Review E, 2013, 87(1): 1–10. DOI: 10.1103/physreve.87.012201.
    [31] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/s0734-743x(02)00037-4.
    [32] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets [J]. International Journal of Solids and Structures, 1997, 34(31–32): 4127–4146. DOI: 10.1016/s0020-7683(97)00017-6.
    [33] FORRESTAL M J, LUK V K. Penetration into soil targets [J]. International Journal of Impact Engineering, 1992, 12(3): 427–444. DOI: 10.1016/0734-743x(92)90167-r.
    [34] WYLLIE D C. Rock fall engineering [M]. Boca Raton: CRC Press, 2015.
    [35] 铁道第二勘察设计院. 铁路隧道设计规范: TB 10003–2005 [S] 北京: 中国铁道出版社, 2005.
  • 期刊类型引用(17)

    1. 周刚,孔阳,崔洋洋,钱新明,傅砺烨,张琦. 城市地下排水管道中燃气爆炸及气-液两相耦合作用规律. 爆炸与冲击. 2024(03): 90-104 . 本站查看
    2. 谢洋洋,孙岩. 水下爆炸多气泡耦合形态及载荷分布特性. 兵器装备工程学报. 2024(06): 10-18 . 百度学术
    3. 李庆海,于福临,郭文琦,苏超,李战全,贾风光,龚月滢. 层冰边界条件下多气泡破冰试验研究. 山东交通学院学报. 2024(03): 104-111 . 百度学术
    4. 方厚林,卢强,郭权势,李国亮,刘存旭,陶思昊,张德志. 水下爆炸冲击波和气泡行为自由面效应的实验研究. 爆炸与冲击. 2024(08): 149-160 . 本站查看
    5. 陈钰帆,黄锡堤,赖志超,秦健,孟祥尧,文彦博,黄瑞源. 板结构水下爆炸下的空化特性. 火炸药学报. 2024(08): 714-729 . 百度学术
    6. 许江,陈涛,王立志,郭君. 不同水底介质浅水爆炸载荷特性试验研究. 中国造船. 2024(04): 180-188 . 百度学术
    7. 刘靖晗,唐廷,韦灼彬,高屹,李凌锋,张星. 水下爆炸作用下高桩码头损伤特性数值模拟研究. 兵器装备工程学报. 2024(10): 53-60 . 百度学术
    8. 赖志超,邓硕,秦健,迟卉,孟祥尧,文彦博,黄瑞源. 不同类型炸药近场水下爆炸下固支方板动态响应研究. 工程力学. 2024(11): 179-194 . 百度学术
    9. 叶记飞,李华,李振瀚,宋执权,傅鹏. 15 kV爆炸开关触头开断过程研究. 强激光与粒子束. 2024(11): 140-147 . 百度学术
    10. 剡小军,孙浩,马林,张旭辉,吴曦,雍顺宁. 水下爆炸作用下典型舰船目标毁伤特性. 兵工学报. 2024(S2): 215-221 . 百度学术
    11. 高龙翔,高涵,潘文,薛乐星,冯晓军. 光电测试技术在炸药爆轰性能研究中的应用进展. 火炸药学报. 2024(12): 1055-1073 . 百度学术
    12. 高涵,宋振伟,孔祥韶,周沪,郑成,吴卫国. 加筋板结构参数对其抗水下爆炸能力的影响分析. 中国舰船研究. 2023(05): 180-193 . 百度学术
    13. 巨圆圆,熊展,张磊,赵鹏铎,杜志鹏. 水下高压气泡动态特性数值模拟. 舰船科学技术. 2023(20): 14-17 . 百度学术
    14. 邓硕,赖志超,秦健,孟祥尧,迟卉,黄瑞源. 复杂边界条件下近场水下爆炸对固支方板的毁伤效应. 爆炸与冲击. 2023(11): 40-57 . 本站查看
    15. 刘元凯,秦健,迟卉,孟祥尧,文彦博,黄瑞源. 近场水下爆炸气泡与目标尺寸匹配关系研究. 爆破. 2023(04): 142-153 . 百度学术
    16. 齐贺阳,田永卫. 基于ABAQUS CEL的高速水冲击载荷仿真与试验研究. 计测技术. 2022(03): 36-42 . 百度学术
    17. 高文博,赵振宇,任建伟,卢天健. 表面覆水对浅埋爆炸冲量传递的影响. 水下无人系统学报. 2022(03): 292-299 . 百度学术

    其他类型引用(12)

  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  526
  • HTML全文浏览量:  294
  • PDF下载量:  97
  • 被引次数: 29
出版历程
  • 收稿日期:  2020-06-30
  • 修回日期:  2020-08-03
  • 网络出版日期:  2021-07-05
  • 刊出日期:  2021-07-05

目录

    /

    返回文章
    返回