垂向冲击下穿戴装备对乘员损伤影响研究

尹宁 王洪亮 张进成 彭兵 叶龙学

尹宁, 王洪亮, 张进成, 彭兵, 叶龙学. 垂向冲击下穿戴装备对乘员损伤影响研究[J]. 爆炸与冲击, 2021, 41(8): 085101. doi: 10.11883/bzycj-2020-0229
引用本文: 尹宁, 王洪亮, 张进成, 彭兵, 叶龙学. 垂向冲击下穿戴装备对乘员损伤影响研究[J]. 爆炸与冲击, 2021, 41(8): 085101. doi: 10.11883/bzycj-2020-0229
YIN Ning, WANG Hongliang, ZHANG Jincheng, PENG Bing, YE Longxue. Research on the effect of wearing equipment on occupant injury under vertical impact[J]. Explosion And Shock Waves, 2021, 41(8): 085101. doi: 10.11883/bzycj-2020-0229
Citation: YIN Ning, WANG Hongliang, ZHANG Jincheng, PENG Bing, YE Longxue. Research on the effect of wearing equipment on occupant injury under vertical impact[J]. Explosion And Shock Waves, 2021, 41(8): 085101. doi: 10.11883/bzycj-2020-0229

垂向冲击下穿戴装备对乘员损伤影响研究

doi: 10.11883/bzycj-2020-0229
基金项目: 国家自然科学基金(51405232,11802140);中央高校基本科研业务费专项资金(30918011303);道路交通安全公安部重点实验室开放基金(2018ZDSYSKFKT09)
详细信息
    作者简介:

    尹 宁(1996- ),男,硕士研究生,1142984459@qq.com

    通讯作者:

    王洪亮(1984- ),男,博士,副教授,whl343@163.com

  • 中图分类号: O383; U463.83

Research on the effect of wearing equipment on occupant injury under vertical impact

  • 摘要: 军事人员在战斗中需要穿戴装备,穿戴装备后对车内乘员承受车辆底部爆炸垂向冲击时的损伤有影响。通过垂向冲击试验与仿真模拟的方法,研究了穿戴装备在身上的分布对于乘员损伤的影响。根据AEP55乘员伤害准则,以盆骨z向加速度和腰椎轴向力为乘员损伤的参考目标,首先通过垂向冲击试验的进行,研究了不同穿戴装备质量对于乘员损伤的影响;接着通过有限元模型对试验进行验证和优化,进而研究穿戴装备位置与松紧度对于垂向冲击下乘员损伤的影响。结果表明随着穿戴装备质量的增加,乘员腰椎损伤加重,脊柱损伤概率减小;装备分布在躯干位置越靠近上部,与身体接触松紧度越紧,乘员腰椎与脊柱的负荷越小,越不易受伤。
  • 图  1  跌落冲击试验台总体结构

    Figure  1.  Overall structure of drop impact test stand

    图  2  座椅跌落试验布置

    Figure  2.  Seat drop test arrangement

    图  3  跌落试验过程中平台中央加速度

    Figure  3.  Central acceleration of the platform during the drop test

    图  4  应用DRI损伤标准的脊柱压缩模型

    Figure  4.  Spinal compression model using DRI injury standard

    图  5  座椅跌落试验中模拟穿戴装备

    Figure  5.  Simulated wearable equipment in a seat drop test

    图  6  座椅跌落试验中不同配重下假人损伤值曲线

    Figure  6.  Dummy damage value curve under different weights in the seat drop test

    图  7  座椅跌落试验中不同重量下假人损伤峰值拟合曲线

    Figure  7.  Fitting curve of the peak value of dummy damage under different weights in the seat drop test

    图  8  跌落台-座椅-乘员系统有限元模型

    Figure  8.  FEM model of drop table-seat-occupant system

    图  9  座椅跌落试验与仿真中的假人损伤值对比曲线

    Figure  9.  Comparison curve of dummy damage value in seat drop test and simulation

    图  10  仿真中躯干部配重背心有限元模型

    Figure  10.  The finite element model of the torso weight vest in the simulation

    图  11  躯干不同位置配重背心有限元模型

    Figure  11.  The finite element model of the weight vest at different positions on the torso

    图  12  仿真中穿戴装备不同分布位置假人损伤值曲线

    Figure  12.  Dummy damage value curves of different distribution positions of wearable equipment in the simulation

    图  13  仿真中穿戴装备与身体接触不同摩擦系数假人损伤值曲线

    Figure  13.  Dummy damage value curve of different friction coefficients between the wearing equipment and the body in the simulation

    表  1  不同配重下的座椅跌落试验

    Table  1.   Seat drop test under different weights

    试验配重质量/kg高度/mm
    1 0501
    2 0501
    3 0499
    411499
    511498
    611502
    716501
    816502
    916499
    10 21499
    11 21501
    12 21498
    下载: 导出CSV

    表  2  座椅跌落试验中不同配重下假人损伤对比

    Table  2.   Comparison of dummy damage under different weights in the seat drop test

    配重/kg腰椎力峰值/N盆骨加速度峰值/gDRI
    0552527.318.9
    11564025.816.6
    16569824.615.9
    21577923.315.5
    最大相对差值4.40%14.60%17.90%
    下载: 导出CSV

    表  3  座椅跌落试验与仿真中的假人损伤对比

    Table  3.   Comparison of dummy injury in seat drop test and simulation

    方法腰椎力峰值/N盆骨加速度峰值/g
    试验552527.3
    仿真529928.7
    相对误差4.1%4.9%
    下载: 导出CSV

    表  4  仿真中穿戴装备不同分布位置假人损伤对比

    Table  4.   Comparison of dummy damage in different distribution positions of wearable equipment in simulation

    位置腰椎力峰值/N盆骨加速度峰值/g
    躯干上半部593829.7
    躯干下半部570828.4
    相对差值3.90%4.30%
    下载: 导出CSV

    表  5  仿真中穿戴装备与身体接触不同摩擦系数假人损伤对比

    Table  5.   Comparison of dummy damage with different friction coefficients between the wearing equipment and the body in the simulation

    摩擦因数腰椎力峰值/N盆骨加速度峰值/g
    0.2583129.2
    0.4578629.0
    0.6567728.9
    0.8548428.7
    最大相对差值5.90%1.70%
    下载: 导出CSV
  • [1] 李红勋, 谭柏春, 贾楠, 等. 美军战术轮式车辆发展策略研究 [J]. 军事交通学院学报, 2012, 14(10): 83–87. DOI: 10.3969/j.issn.1674-2192.2012.10.022.

    LI H X, TAN B C, JIA N, et al. Research on US military tactic wheeled vehicle strategy [J]. Journal of Academy of Military Transportation, 2012, 14(10): 83–87. DOI: 10.3969/j.issn.1674-2192.2012.10.022.
    [2] BOSCH K, HARRIS K, MELOTIK J. Blast mitigation seat analysis—drop tower data review [C]// Proceedings of 2014 NDIA Ground Vehicle Systems Engineering and Technology Symposium. Novi, Michigan, 2014.
    [3] CHENG M, DIONNE J P, MAKRIS A. On drop-tower test methodology for blast mitigation seat evaluation [J]. International Journal of Impact Engineering, 2010, 37(12): 1180–1187. DOI: 10.1016/j.ijimpeng.2010.08.002.
    [4] 吕平华. 100 kg冲击试验机的设计分析与计算 [J]. 试验技术与试验机, 1995, 35(1/2): 12–16, 22.

    LV P H. Design analysis and calculation of 100 kg impact test machine [J]. Test Technology and Test Machine, 1995, 35(1/2): 12–16, 22.
    [5] 于治会. 一种跌落冲击台的设计原则 [J]. 上海计量测试, 2000(3): 23–26.

    YU Z H. Design principle of a drop impact table [J]. Shanghai Meassurement and Testing, 2000(3): 23–26.
    [6] ZHANG J, MERKLE A C, CARNEAL C M, et al. Effects of torso-borne mass and loading severity on early response of the lumbar spine under high-rate vertical loading [C]// Interna-tional Research Council on the Biomechanics of Injury Conference (IRCOBI). Gothenburg, Sweden, 2013: 111−123. .
    [7] CHENG M, DIONNE J, MAKRIS A. Use of the dynamic response index as a criterion for spinal injury in practical applications [C]// Personal Armour Systems Symposium (PASS). QuebecCity, QC, Canada, 2010. .
    [8] NATO. Procedures for evaluating the protection level of logistic and light armored vehicles: AEP-55, Vol 2, mine threat [R]. Brussels: Allied Engineering Publication, 2011.
    [9] PAYNE P R, STECH E L. Dynamic models of the human body: AMRL-TR-66-157 [R]. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, OH, 1969.
    [10] 杨冲. Hybrid Ⅲ 50th假人腰椎力学特性测试方法研究[D]. 长沙: 湖南大学, 2017: 5−8.

    YANG C. The research on test methods of hybrid Ⅲ 50th dummy lumbar spine’s mechanical properties [D]. Changsha: Hunan University, 2017: 5−8.
    [11] LOU K A. Simulation of various LSTC dummy models to correlate drop test results [C]//Proceedings of the 13th International LS-DYNA Users Conference. Michigan, USA: Livermore Software Technology Corporation, 2013: 1−12.
    [12] RICHARDS M, SIEVEKA E. The effects of body-borne equipment weight on ATD lumbar loads measured during crashworthy seat vertical dynamic tests [R]. American Helicopter Society 67th Annual Forum, 2011.
    [13] AGGROMITO D, THOMSON R, WANG J, et al. Effect of body-borne equipment on injury of military pilots and aircrew during a simulated helicopter crash [J]. International Journal of Industrial Ergonomics, 2015, 50: 130–142. DOI: 10.1016/j.ergon.2015.07.001.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  264
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2020-09-09
  • 网络出版日期:  2021-07-08
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回