轴向分布式药包激发地震波场模型

徐谦 王仲琦

徐谦, 王仲琦. 轴向分布式药包激发地震波场模型[J]. 爆炸与冲击, 2021, 41(7): 072302. doi: 10.11883/bzycj-2020-0236
引用本文: 徐谦, 王仲琦. 轴向分布式药包激发地震波场模型[J]. 爆炸与冲击, 2021, 41(7): 072302. doi: 10.11883/bzycj-2020-0236
XU Qian, WANG Zhongqi. Model of seismic wave field excited by axially distributed explosive[J]. Explosion And Shock Waves, 2021, 41(7): 072302. doi: 10.11883/bzycj-2020-0236
Citation: XU Qian, WANG Zhongqi. Model of seismic wave field excited by axially distributed explosive[J]. Explosion And Shock Waves, 2021, 41(7): 072302. doi: 10.11883/bzycj-2020-0236

轴向分布式药包激发地震波场模型

doi: 10.11883/bzycj-2020-0236
基金项目: 国家科技重大专项(2016ZX05006-002)
详细信息
    作者简介:

    徐 谦(1993- ),男,博士研究生,chinaxuqian@126.com

    通讯作者:

    王仲琦(1972- ),男,博士,副教授,czqwang@bit.edu.cn

  • 中图分类号: O382.2

Model of seismic wave field excited by axially distributed explosive

  • 摘要: 炸药震源激发地震波场幅频特性直接影响地震勘探精度,本文通过计算研究轴向分布式药包激发地震波场幅频特征规律:以球形空腔震源模型为基础,采用叠加方法获得轴向分布式药包激发地震波场计算方法,并与数值模拟结果进行对比。研究表明:该方法误差在7%以内;在爆心距大于药柱总长度9.8倍时轴向分布式药包所激发地震波速度场与球形药包基本一致,但地震波的频率更高。
  • 图  1  轴向分布式药包在岩土介质中爆炸分区

    Figure  1.  Explosive zoning of an axially distributed charge in geotechnical media

    图  2  轴向分布式激发方案

    Figure  2.  Axial distributed excitation

    图  3  轴向分布式药包最大振动速度

    Figure  3.  Maximum vibration velocity at different locations of axial distributed excitation:

    图  4  传感器布置

    Figure  4.  Sensor layout

    图  5  不同激发方案地震波的峰值粒子振动速度衰减规律

    Figure  5.  Peak particle vibration velocities of seismic waves with different excitation schemes

    图  6  球形药包和轴向分布式药包地震波场

    Figure  6.  Seismic wave field of spherical explosive and axially-distributed explosive

    图  7  相同质点振动速度时球形药包距离与柱形药包轴向、径向距离对比

    Figure  7.  Comparison of the distance between spherical explosives and different directions of axially distributed cylindrical explosives at the same particle vibration velocity

    图  8  轴向分布式柱形药包和球形药包形成地震波主频对比

    Figure  8.  Comparison of frequency of spherical charge and axially distributed charge

    表  1  轴向分布式炸药激发方案

    Table  1.   Excitation scheme of axially distributed explosives

    方案药柱数量单药柱质量/kg药柱间隔/mm总药量/kg延迟时间/s激发方向
    3 kg×22340060.3由上而下
    2 kg×33240060.3由上而下
    1.5 kg×441.540060.3由上而下
    下载: 导出CSV

    表  2  土介质参数

    Table  2.   Parameters of soil

    $ {\sigma }_{\mathrm{c}} $/MPa$ {\sigma }_{\mathrm{t}} $/MPa$G$/GPa$ \alpha $$ \varphi /\mathrm{k}\mathrm{P}\mathrm{a} $$ {\rho }_{\mathrm{s}} $/($ \mathrm{k}\mathrm{g} \cdot {\mathrm{m}}^{3} $)k/MPaG/MPa$ {\sigma }_{\mathrm{y}} $/MPa
    1320.1470.11511.8184024514722
    下载: 导出CSV

    表  3  TNT炸药特性参数

    Table  3.   Parameters of TNT

    C1/GPaC2/GPaR1R2ωρe/(kg·m−3D/(m·s−1e/(J·m−3pCJ/GPap0/GPa
    373.73.7474.150.900.35165069306.0$ \times {10}^{9} $219.82
    下载: 导出CSV

    表  4  检波器部分参数

    Table  4.   Parameters of sensors

    量程/V灵敏度/[V·(m·s−1−1]通频带/Hz误差范围/%
    1071~100<0.05
    下载: 导出CSV

    表  5  不同位置(x)处峰值粒子速度实验结果相与计算结果的相对误差

    Table  5.   Table 6 Relative error of experimental results of peak paritcle velocity to the calculational ones at different position x

    炸药激发方案误差/%
    x=10 mx=14 mx=18 mx=22 mx=26 mx=30 m
    3 kg×24.524.844.774.323.924.12
    2 kg×34.564.634.323.934.123.93
    1.5 kg×48.016.826.517.258.809.44
    下载: 导出CSV
  • [1] 陆基孟, 王永刚. 地震勘探原理[M]. 青岛: 中国石油大学出版社, 2009: 3−5.
    [2] 钱七虎, 王明洋. 岩土中的冲击爆炸效应[M]. 北京: 国防工业出版社, 2010: 52−57.
    [3] JEFFREYS H. On the cause of oscillatory movement in seismograms [J]. Geophysical Journal International, 1931, 2(S8): 407–416. DOI: 10.1111/j.1365-246X.1931.tb04462.x.
    [4] SHARPE J A. The production of elastic waves by explosion pressures: I: theory and empirical field observations [J]. Geophysics, 1942, 7(2): 144–154. DOI: 10.1190/1.1445002.
    [5] BLAKE F G Jr. Spherical wave propagation in solid media [J]. The Journal of the Acoustical Society of America, 1952, 24(2): 211–215. DOI: 10.1121/1.1906882.
    [6] 肖建华, 孙文涛. 关于点爆炸震源产生的地震子波 [J]. 石油地球物理勘探, 1997, 32(6): 809–817. DOI: 10.3321/j.issn:1000-7210.1997.06.006.

    XIAO J H, SUN W T. Seismic wavelet generated by point explosive source [J]. Oil Geophysical Prospecting, 1997, 32(6): 809–817. DOI: 10.3321/j.issn:1000-7210.1997.06.006.
    [7] 肖建华. 论球面波波动方程 [J]. 石油地球物理勘探, 2001, 36(2): 160–172. DOI: 10.3321/j.issn:1000-7210.2001.02.004.

    XIAO J H. Argument on wave equation of spherical wave [J]. Oil Geophysical Prospecting, 2001, 36(2): 160–172. DOI: 10.3321/j.issn:1000-7210.2001.02.004.
    [8] 丁桦, 郑哲敏. 爆破震动等效载荷模型 [J]. 中国科学(E辑), 2003, 33(1): 82–90. DOI: 10.3969/j.issn.1674-7259.2003.01.011.
    [9] 林大超, 白春华. 爆炸地震效应[M]. 北京: 地质出版社, 2007.
    [10] YU C L, WANG Z Q, HAN W G. A prediction model for amplitude-frequency characteristics of blast-induced seismic waves [J]. GEOPHYSICS, 2018, 83: T159–T173. DOI: 10.1190/geo2017-0228.1.
    [11] HEELAN P A. Radiation from a cylindrical source of finite length [J]. Geophysics, 1953, 18(3): 685–696. DOI: 10.1190/1.1437923.
    [12] STARFIELD A M, PUGLIESE J M. Compression waves generated in rock by cylindrical explosive charges: a comparison between a computer model and field measurements [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1968, 5(1): 65–77. DOI: 10.1016/0148-9062(68)90023-5.
    [13] 龙源, 林学圣, 许连坡. 条形装药土中爆炸空腔发展过程的实验研究 [J]. 爆炸与冲击, 1988, 8(3): 227–235.

    LONG Y, LIN X S, XU L P. Experimental research on growth process of the cavity of a strip-shaped explosive charge exploding in soil [J]. Explosion and Shock Waves, 1988, 8(3): 227–235.
    [14] 李鹏毅, 王仲琦, 徐谦, 等. 有限长柱形药包土中爆腔特征尺寸的计算方法 [J]. 爆炸与冲击, 2019, 39(12): 124201. DOI: 10.11883/bzycj-2018-0416.

    LI P Y, WANG Z Q, XU Q, et al. Calculation methods for characteristic sizes of blasting cavities induced by finite-length cylindrical charges in soil [J]. Explosion and Shock Waves, 2019, 39(12): 124201. DOI: 10.11883/bzycj-2018-0416.
    [15] 于成龙, 王仲琦. 球形装药爆腔预测的准静态模型 [J]. 爆炸与冲击, 2017, 37(2): 249–254. DOI: 10.11883/1001-1455(2017)02-0249-06.

    YU C L, WANG Z Q. Quasi-static model for predicting explosion cavity with spherical charges [J]. Explosion and Shock Waves, 2017, 37(2): 249–254. DOI: 10.11883/1001-1455(2017)02-0249-06.
    [16] 胡立新, 杨德宽, 何兵寿, 等. 延迟爆炸法的理论分析 [J]. 石油地球物理勘探, 2002, 37(1): 33–38. DOI: 10.3321/j.issn:1000-7210.2002.01.007.

    HU L X, YANG D K, HE B S, et al. Theoretic analysis of delayed blast [J]. Oil Geophysical Prospecting, 2002, 37(1): 33–38. DOI: 10.3321/j.issn:1000-7210.2002.01.007.
    [17] 黄文尧, 颜事龙, 吕淑然, 等. 低爆速细长震源药柱的研究与应用 [J]. 爆破器材, 2005, 34(4): 18–22. DOI: 10.3969/j.issn.1001-8352.2005.04.007.

    HUANG W Y, YAN S L, LÜ S R, et al. The research and application of the low detonation velocity and elongated source charge [J]. Explosive Materials, 2005, 34(4): 18–22. DOI: 10.3969/j.issn.1001-8352.2005.04.007.
    [18] 牟杰. 炸药震源激发地震波近场特征试验研究[D]. 北京: 北京理工大学, 2015.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  478
  • HTML全文浏览量:  357
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-03
  • 修回日期:  2020-09-07
  • 网络出版日期:  2021-07-05
  • 刊出日期:  2021-07-05

目录

    /

    返回文章
    返回