低频爆轰不稳定性形成机理的数值模拟研究

张允祯 程杪 荣光耀 王健平

张允祯, 程杪, 荣光耀, 王健平. 低频爆轰不稳定性形成机理的数值模拟研究[J]. 爆炸与冲击, 2021, 41(9): 092101. doi: 10.11883/bzycj-2020-0239
引用本文: 张允祯, 程杪, 荣光耀, 王健平. 低频爆轰不稳定性形成机理的数值模拟研究[J]. 爆炸与冲击, 2021, 41(9): 092101. doi: 10.11883/bzycj-2020-0239
ZHANG Yunzhen, CHENG Miao, RONG Guangyao, WANG Jianping. Numerical investigation on formation mechanism of low-frequency detonation instability[J]. Explosion And Shock Waves, 2021, 41(9): 092101. doi: 10.11883/bzycj-2020-0239
Citation: ZHANG Yunzhen, CHENG Miao, RONG Guangyao, WANG Jianping. Numerical investigation on formation mechanism of low-frequency detonation instability[J]. Explosion And Shock Waves, 2021, 41(9): 092101. doi: 10.11883/bzycj-2020-0239

低频爆轰不稳定性形成机理的数值模拟研究

doi: 10.11883/bzycj-2020-0239
基金项目: 国家自然科学基金(91741202)
详细信息
    作者简介:

    张允祯(1998- ),男,学士,zhangyz9436@foxmail.com

    通讯作者:

    王健平(1961- ),男,博士,教授,wangjp@pku.edu.cn

  • 中图分类号: O381

Numerical investigation on formation mechanism of low-frequency detonation instability

  • 摘要: 对连续爆轰发动机中常见的低频爆轰不稳定性现象开展了基于含源项Euler方程的二维数值模拟研究,揭示了低频爆轰不稳定性产生的机理和详细过程。结果表明,燃烧室头部持续存在一些反传激波,这些激波与进气壁面相互作用会产生“进气阻滞点”,导致新鲜气体层不规则分布;不规则新鲜气体层会使爆轰波头上的压强分布随进气阻滞点的分布位置产生周期性变化;随着进气阻滞点产生的位置沿着进气壁面的缓慢移动,爆轰波头每次与采样点相遇时,采样点与上个进气阻滞点之间的距离会逐渐发生变化,因此采样点的压强峰值便产生了低频率的起伏振荡,即形成了所谓的低频爆轰不稳定性。
  • 图  1  连续爆轰发动机原理(二维圆柱流场及其展开结构)

    Figure  1.  Schemetic of RDE (2D cylindrical flow field and its unfolding structure)

    图  2  初始时刻计算域

    Figure  2.  Computational domain at the initial time

    图  3  不同网格尺寸的计算结果(温度云图和特征压力梯度对数云图)

    Figure  3.  Calculation results of different grid sizes (temperature nephogram and pressure gradient logarithmic nephogram)

    图  4  采样点(传感器处)的压强-时间曲线

    Figure  4.  The pressure-time track of sampling points (or the points where the sensors are placed)

    图  5  进气壁面上最大压强随时间的变化

    Figure  5.  Track of the peak pressure on the inlet wall

    图  6  374~384 μs爆轰波头的传播情况

    Figure  6.  Propagation of detonation front between 374−384 μs

    图  7  374~385 μs爆轰波头上的压强轴向分布

    Figure  7.  Axial distribution of the pressure on the detonation front between 374−385 μs

    图  8  进气壁面上最大压强的变化(数值模拟结果)

    Figure  8.  Track of the peak pressure on the inlet wall (numerical result)

    图  9  采样点压强振荡的形成机理

    Figure  9.  The schematic diagram of mechanism of the pressure oscillation at the sampling point

    图  10  爆轰波每旋转两周进气阻滞点产生的位置

    Figure  10.  The position of IBP in every two cycles of detonation wave rotation

    图  11  进气阻滞点的产生

    Figure  11.  Generation of injet blocking points

    图  12  进气被阻滞处及左右各一点在进气阻滞点产生时的压强变化和稳定进气情况

    Figure  12.  Pressure track of the place where intake process is interrupted and one point on each side when IBP is being generated, and the stable intake situation

    图  13  燃烧室头部压强对数云图

    Figure  13.  Logarithmic nephogram of pressure at the head of combustor

  • [1] 张宝銔, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2006.
    [2] LEE J H S. The detonation phenomenon [M]. Cambridge University Press, 2008.
    [3] 王健平, 张树杰, 姚松柏. 连续爆轰发动机的研究进展 [J]. 宇航总体技术, 2019, 3(2): 1–11.

    WANG J P, ZHANG S J, YAO S B. Progress of continuous detonation engine [J]. Astronautical Systems Engineering Technology, 2019, 3(2): 1–11.
    [4] VOITSEKHOVSKII B. Stationary spin detonation [J]. Soviet Journal of Applied Mechanics and Technical Physics, 1960, 3(3): 157–164.
    [5] NLCHOLLS J A, CULLEN R E, RAGLAND K W. Feasibility studies of a rotating detonation wave rocket motor [J]. Journal of Spacecraft and Rockets, 1966, 3(6): 893–898. DOI: 10.2514/3.28557.
    [6] BYKOVSKII F A, MITROFANOV V V. Detonation combustion of a has mixture in a cylindrical chamber [J]. Combustion, Explosion and Shock Waves, 1980, 16(5): 570–578. DOI: 10.1007/BF00794937.
    [7] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation in annular combustors [J]. Combustion, Explosion, and Shock Waves, 2005, 41(4): 449–459. DOI: 10.1007/s10573-005-0055-6.
    [8] BYKOVSKII F A, ZHDAN S A. Current status of research of continuous cetonation in fuel-air mixtures (review) [J]. Combustion, Explosion, and Shock Waves, 2015, 51(1): 21–35. DOI: 10.1134/S0010508215010025.
    [9] FROLOV S M, AKSENOV V S, IVANOV V S, et al. Rocket engine with continuous detonation combustion of the natural gas–oxygen propellant system [J]. Doklady Physical Chemistry, 2018, 478(2): 31–34. DOI: 10.1134/S001250161802001X.
    [10] WOLAŃSKI P. Application of the continuous rotating detonation to gas turbine [J]. Applied Mechanics and Materials, 2015, 782: 3–12. DOI: 10.4028/www.scientific.net/AMM.782.3.
    [11] HAYASHI A K. Recent experimental and numerical study on disc-type RDEs [C]// AIAA Scitech 2020 Forum. Orlando, FL: American Institute of Aeronautics and Astronautics, 2020. DOI: 10.2514/6.2020-1169.
    [12] ISHIHARA K, MATSUOKA K, KASAHARA J, et al. Performance evaluation of a rotating detonation engine with conical-shape tail [C]// 53rd AIAA Aerospace Sciences Meeting. Kissimmee, Florida: American Institute of Aeronautics and Astronautics, 2015. DOI: 10.2514/6.2015-0630.
    [13] FOTIA M L, SCHAUER F, KAEMMING T, et al. Experimental study of the performance of a rotating detonation engine with nozzle [J]. Journal of Propulsion and Power, 2016, 32(3): 674–681. DOI: 10.2514/1.B35913.
    [14] SCHWER D, CORRIGAN A, TAYLOR B, et al. On reducing feedback pressure in rotating detonation engines [C]// 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Grapevine (Dallas/Ft. Worth Region), Texas: American Institute of Aeronautics and Astronautics, 2013. DOI: 10.2514/6.2013-1178.
    [15] 王健平, 石天一, 王宇辉, 等. 连续爆轰发动机的实验研究[C]// 第十四届全国激波与激波管学术会议论文集(上册). 安徽黄山: 中国力学学会激波与激波管专业委员会, 2010: 4.
    [16] MA Z, ZHANG S, LUAN M, et al. Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine [J]. International Journal of Hydrogen Energy, 2018, 43(39): 18521–18529. DOI: 10.1016/j.ijhydene.2018.08.064.
    [17] 王超, 刘卫东, 刘世杰, 等. 高总温来流下的连续旋转爆震验证试验 [J]. 推进技术, 2016, 37(3): 578–584. DOI: 10.13675/j.cnki.tjjs.2016.03.023.

    WANG C, LIU W D, LIU S J, et al. Validating experiment of continuous rotating detonation under high total temperature air [J]. Journal of Propulsion Technology, 2016, 37(3): 578–584. DOI: 10.13675/j.cnki.tjjs.2016.03.023.
    [18] WANG Y H, WANG J P. Rotating detonation instabilities in hydrogen-oxygen mixture [J]. Applied Mechanics and Materials, 2015, 709: 56–62. DOI: 10.4028/www.scientific.net/AMM.709.56.
    [19] ANAND V, ST GEORGE A, DRISCOLL R, et al. Statistical treatment of wave instability in rotating detonation combustors [C]// American Institute of Aeronautics and Astronautics. 53rd AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 2015. DOI: 10.2514/6.2015-1103.
    [20] ANAND V, ST GEORGE A, DRISCOLL R, et al. Characterization of instabilities in a rotating detonation combustor [J]. International Journal of Hydrogen Energy, 2015, 40(46): 16649–16659. DOI: 10.1016/j.ijhydene.2015.09.046.
    [21] ANAND V, GUTMARK E. Types of low frequency instabilities in rotating detonation combustors [C]// Active Flow and Combustion Control 2018. Cham: Springer International Publishing, 2019: 197–213. DOI: 10.1007/978-3-319-98177-2_13.
    [22] ZHANG S, YAO S, LUAN M, et al. Effects of injection conditions on the stability of rotating detonation waves [J]. Shock Waves, 2018, 28(5): 1079–1087. DOI: 10.1007/s00193-018-0854-9.
    [23] 武丹, 王健平. 粘性及热传导对于爆轰波的影响 [J]. 应用力学学报, 2012, 29(6): 630–635, 769.

    WU D, WANG J P. Influences of viscosity and thermal conductivity on detonation waves [J]. Chinese Journal of Applied Mechanics, 2012, 29(6): 630–635, 769.
    [24] 李廷文, 王健平, 叶朝晖. 基元化学反应一维爆轰波的数值模拟 [J]. 空气动力学学报, 2007(2): 199–204. DOI: 10.3969/j.issn.0258-1825.2007.02.011.

    LI T W, WANG J P, YE C H. Numerical simulation of one-dimensional detonation with detailed chemical reaction model [J]. Acta Aerodynamica Sinica, 2007(2): 199–204. DOI: 10.3969/j.issn.0258-1825.2007.02.011.
    [25] 刘君, 张涵信, 高树椿. 一种新型的计算化学非平衡流动的解耦方法 [J]. 国防科技大学学报, 2000(5): 19–22. DOI: 10.3969/j.issn.1001-2486.2000.05.005.

    LIU J, ZHANG H X, GAO S C. A new uncoupled method for numerical simulation of non-equilibrium flow [J]. Journal of National University of Defense Technology, 2000(5): 19–22. DOI: 10.3969/j.issn.1001-2486.2000.05.005.
    [26] HISHIDA M, FUJIWARA T, WOLANSKI P. Fundamentals of rotating detonations [J]. Shock Waves, 2009, 19(1): 1–10. DOI: 10.1007/s00193-008-0178-2.
    [27] ATHMANATHAN V, BRAUN J, AYERS Z, et al. Detonation structure evolution in an optically-accessible non-premixed H2 -air RDC using MHz rate imaging [C]// AIAA Scitech 2020 Forum. Orlando, Florida: American Institute of Aeronautics and Astronautics, 2020. DOI: 10.2514/6.2020-1178.
    [28] HADJADJ A, KUDRYAVTSEV A. Computation and flow visualization in high-speed aerodynamics [J]. Journal of Turbulence, 2005, 6: N16. DOI: 10.1080/14685240500209775.
    [29] CHEN Y, LIU X, WANG J. Influences of separate injectors on rotating detonation engines [C]// 2018 Joint Propulsion Conference. Cincinnati, Ohio: American Institute of Aeronautics and Astronautics, 2018. DOI: 10.2514/6.2018-4785.
  • 加载中
图(13)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  345
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 修回日期:  2021-01-15
  • 网络出版日期:  2021-08-12
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回