Research on the equivalent relationship of torpedo penetrated by underwater supercavitation projectile based on energy consumption model
-
摘要: 超空泡射弹是水下防御技术的研究热点之一。水下毁伤试验费用大,成本高,陆上等效试验是一种可能的替代方案。为此需要获得水下超空泡射弹侵彻条件下目标与相关材料的等效关系。以MK48-5鱼雷为对象,构建由壳体和14个关键部件组成的典型鱼雷结构模型。考虑水介质对侵彻的影响,将水下超空泡射弹侵彻鱼雷的过程分为两个阶段(a. 射弹侵彻水介质和鱼雷壳体,b. 射弹侵彻鱼雷内部关键部件);建立水介质耗能模型和靶板耗能模型;依据极限穿透速度等效原则和能量等效原则,分别得出两个阶段目标和等效靶之间的靶板厚度关系;为了获得射弹垂直命中鱼雷不同方向及不同工况毁伤效果,需要对纵向侵彻全雷和横向侵彻鱼雷战雷段、控制段、燃料舱和后舱雷尾4个典型舱段分别进行研究;并基于此建立了水下侵彻和不同工况条件下射弹侵彻鱼雷的多层等效靶模型。Abstract: Supercavitation projectile is one of the research hotspots of underwater defence technology. The cost of underwater damage test is so high that equivalent test on land is considered as a possible alternative. Therefore, it is necessary to obtain the equivalent relationship between the target and related materials under the condition of supercavitating projectile underwater penetration. Taking MK48-5 torpedo as the object, a typical torpedo structure model composed of shell and 14 key components is constructed. Considering the influence of aqueous medium on penetration, the process of underwater supercavitating projectile penetrated torpedo could be divided into two stages: (1) the projectile penetrated the aqueous medium and the torpedo shell, (2) the projectile penetrated key parts of the torpedo. The energy consumption model of aqueous medium and target plate are established. According to the principle of limit penetration velocity equivalence and energy equivalence, the relationship between target and equivalent target in two stages is obtained respectively. In order to obtain the damage effect of projectiles hitting torpedoes vertically in different directions and under different working conditions, it is necessary to study the four typical sections of torpedoe: warhead, control section, fuel tank and torpedo afterbody. Therefore, the multi-layer equivalent target models of underwater penetration and torpedo penetration under different conditions are established.
-
Key words:
- penetration /
- torpedo /
- supercavitating projectile /
- equivalent relation /
- energy consumption model
-
表 1 制导系统关键部件及其基本特征
Table 1. Key components and basic features of guidance system
部件 尺寸/mm 中心坐标/mm 换能器 39×156×156 (39,0,0) 发射机 65×234×234 (169,0,0) 声自导控制逻辑组件 195×39×208 (455,91,0) 接收机 195×39×208 (455,−91,0) 线团 156×234×234 (2600,0,0) 表 2 战斗部系统关键部件及其基本特征
Table 2. Key components and basic features of the warhead system
部件 尺寸/mm 中心坐标/mm 战斗部壳体 585×208×208 (1287,0,0) 引爆装置 65×117×65 (1469,0,0) 表 3 控制系统关键部件及其基本特征
Table 3. Key components and basic characteristics of control system
部件 尺寸/mm 中心坐标/mm 陀螺等传感器控制组件 260×26×182 (2158,0,0) 指令控制组件 260×52×182 (2158,−104,0) 电源组件 260×39×182 (2158,117,0) 表 4 动力推进系统关键部件及其基本特征
Table 4. Key components and basic characteristics of propulsion system
部件 尺寸/mm 中心坐标/mm 燃料舱 650×247×247 (3432,0,0) 辅助泵 195×234×234 (4303,0,0) 发动机 390×195×195 (4914,0,0) 泵喷射推进器 260×260×260 (5590,0,0) 表 5 鱼雷及等效靶材料参数
Table 5. Material parameters of torpedo and equivalent target
材料 密度/(g·cm−3) 屈服强度/MPa 弹性模量/GPa 7039铝合金 2.78 503.00 71.54 A356铝合金 2.80 216.64 72.40 TA1钛合金 4.51 275.00 110.00 LY-12铝合金 2.78 325.00 68.00 表 6 射弹横向侵彻鱼雷战雷段等效靶的理论计算数据
Table 6. The theoretical calculation data of the equivalent target of warhead for the transverse penetration of projectiles
名称 厚度/mm 等效靶厚度/mm 水介质和壳体 16.0 8 引爆装置 2 4 主装药和战斗部壳体 5.5 30 底部壳体 3 6 表 7 射弹纵向侵彻全雷等效模型结构表
Table 7. Structure table of equivalent model for longitudinal penetration of projectiles into mine
部位 等效厚度/mm 相对间隙/mm 倾角/(°) 水介质和壳体 8 0 60 换能器 2 34 90 发射机 4 127 90 自导控制逻辑组件 2 283 90 战斗部 30 829 90 控制系统 6 867 90 线团 2 438 90 燃料舱 4 829 90 辅助泵 8 866 90 发动机 12 601 90 泵喷射推进器 10 665 90 尾部壳体 6 252 150 表 8 射弹横向侵彻鱼雷战雷段等效模型
Table 8. Equivalent model for transverse penetration of projectiles into warhead
部位 等效厚度/mm 相对间隙/mm 倾角/(°) 水介质和壳体 8 0 90 引爆装置 4 169.7 90 主装药和战斗部壳体 30 81.5 90 底部壳体 6 256.2 90 表 9 射弹横向侵彻鱼雷控制段等效模型结构表
Table 9. Structure table of equivalent model for transverse penetration of projectiles into control section
名称 等效厚度/mm 相对间隙/mm 倾角/(°) 水介质和壳体 8 0 90 电源组件 6 142.7 90 陀螺等传感器控制组件 6 111.0 90 指令控制组件 6 98.0 90 底部壳体 6 156.7 90 表 10 射弹横向侵彻鱼雷燃料舱等效模型结构表1
Table 10. Structure table 1 of equivalent model for transverse penetration of projectiles into fuel tank
部位 等效厚度/mm 等效间隙/mm 倾角/(°) 水介质和顶部壳体 8 0 90 线团 2 261.7 90 底部壳体 6 262.7 90 表 11 射弹横向侵彻鱼雷燃料舱等效模型结构表2
Table 11. Structure table 2 of equivalent model for transverse penetration of projectiles into fuel tank
部位 等效厚度/mm 等效间隙/mm 倾角/(°) 水介质和顶部壳体 8 0 90 燃料舱 4 260.7 90 底部壳体 6 261.7 90 表 12 射弹横向侵彻后舱雷尾等效模型结构1
Table 12. Equivalent model 1 for transverse penetration of projectiles into torpedo afterbody
部位 等效厚度/mm 等效间隙/mm 倾角/(°) 水介质和壳体 8 0 90 辅助泵 8 258.7 90 壳体 6 259.7 90 表 13 射弹横向侵彻后舱雷尾等效模型结构2
Table 13. Equivalent model 2 for transverse penetration of projectiles into torpedo afterbody
部位 等效厚度/mm 等效间隙/mm 倾角/(°) 水介质和壳体 8 0 90 发动机 12 256.7 90 壳体 6 257.7 90 表 14 射弹横向侵彻后舱雷尾等效模型结构3
Table 14. Equivalent model 3 for transverse penetration of projectiles into torpedo afterbody
部位 等效厚度/mm 等效间隙/mm 倾角/(°) 水介质和壳体 8 0 30 泵喷射推进器 10 257.7 90 壳体 6 258.7 150 -
[1] 金大桥, 王聪, 余锋. 水下超空泡射弹研究综述 [J]. 飞航导弹, 2010(7): 19–23. DOI: 10.16338/j.issn.1009-1319.2010.07.004.JIN D Q, WANG C, YU F. A Review of underwater supercavitation projectiles [J]. Winged Missiles Journal, 2010(7): 19–23. DOI: 10.16338/j.issn.1009-1319.2010.07.004. [2] FARRAND T, MAGNESS L, BURKINS M. Definition and uses of RHA equivalences for medium caliber targets [C]// Proceedings of the 19th International Symposium of Ballistics. Interlaken, 2001: 1159−1165. [3] HELD M. Shaped charge steel equivalence [C]// Proceedings of the 20th International Symposium on Ballistics. Orlando, 2002: 23−27. [4] 熊冉, 高欣宝, 张俊坤, 等. 杆式穿甲弹侵彻下陶瓷与均质钢板的等效关系数值分析 [J]. 弹箭与制导学报, 2013, 33(5): 102–104. DOI: 10.15892/j.cnki.djzdxb.2013.05.004.XIONG R, GAO X B, ZHANG J K, et al. The simulation on equivalence between ceramic and homogeneous steel impacted by rod armor-piercing projectile [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(5): 102–104. DOI: 10.15892/j.cnki.djzdxb.2013.05.004. [5] 周捷, 智小琦, 徐锦波, 等. 小尺寸破片对单兵防护装备的侵彻研究 [J]. 爆炸与冲击, 2019, 39(2): 023304. DOI: 10.11883/bzycj-2018-0023.ZHOU J, ZHI X Q, XU J B, et al. Research on penetration of small size fragment to single soldier protection equipment [J]. Explosion and Shock Waves, 2019, 39(2): 023304. DOI: 10.11883/bzycj-2018-0023. [6] 曹兵. 603靶板抗EFP侵彻等效靶实验研究 [J]. 爆破器材, 2007, 36(1): 36–39. DOI: 10.3969/j.issn.1001-8352.2007.01.012.CAO B. Experimental study on the equivalent target of 603 armor penetrated by EFP [J]. Explosive Materials, 2007, 36(1): 36–39. DOI: 10.3969/j.issn.1001-8352.2007.01.012. [7] 李运禄. EFP/破片组合式防空反导战斗部对反舰导弹毁伤的数值模拟研究 [D]. 太原: 中北大学, 2016: 58−81.LI Y L. Research on damage performance of EFP/fragment combined air defense and antimissile warhead to anti-ship missile [D]. Taiyuan: North University of China, 2016: 58−81. [8] 张培忠, 何永, 高树滋. 相似模拟法在脱壳穿甲弹威力靶设计中的应用 [J]. 南京理工大学学报, 2000, 24(1): 6–8. DOI: 10.14177/j.cnki.32-1397n.2000.01.002.ZHANG P Z, HE Y, GAO S Z. Application of similitude method in the design of sabot armor piercing projectile power target [J]. Journal of Nanjing University of Science and Technology, 2000, 24(1): 6–8. DOI: 10.14177/j.cnki.32-1397n.2000.01.002. [9] 赵金库. 小口径尾翼稳定脱壳穿甲弹技术研究 [D]. 南京: 南京理工大学, 2010: 58−72. DOI: 10.7666/d.y1697774.ZHAO J K. Research on the technology of small caliber tail stabilized shelled penetrator [D]. Nanjing: Nanjing University of Science and Technology, 2010: 58−72. DOI: 10.7666/d.y1697774. [10] 周岩, 唐平, 常敬臻, 等. 舰舷结构与均质靶板等效关系的基本方法 [J]. 弹道学报, 2008, 20(1): 30–34.ZHOU Y, TANG P, CHANG J Z, et al. Basic method for equivalent relation between structure of warship and homogeneous target [J]. Journal of Ballistics, 2008, 20(1): 30–34. [11] 刘亭, 刘轶强. 射弹侵彻下鱼、水雷壳体与均质钢的等效关系 [J]. 水雷战与舰船防护, 2014, 22(4): 8–12, 16.LIU T, LIU Y Q. Equivalent relation of torpedo and sea mine shell and homogeneous steel under projectile penetration [J]. Mine Warfare & Ship Self-Defence, 2014, 22(4): 8–12, 16. [12] 尹韶平, 刘瑞生. 鱼雷总体技术 [M]. 北京: 国防工业出版社, 2011.YIN S P, LIU R S. Torpedo overall technology [M]. Beijing: National Defense Industry Press, 2011. [13] 石秀华, 王晓娟. 水中兵器概论-鱼雷分册 [M]. 西安: 西北工业大学出版社, 2005: 1−11.SHI X H, WANG X J. Introduction to underwater weapons torpedo section [M]. Xi’an: Northwestern Polytechnical University Press, 2005: 1−11. [14] 李向东, 杜忠华. 目标易损性 [M]. 北京: 北京理工大学出版社, 2013.LI X D, DU Z H. Target vulnerability [M]. Beijing: Beijing Institute of Technology Press, 2013. [15] 康德. 超空泡射弹对典型鱼雷的毁伤效能评估方法研究 [D]. 武汉: 海军工程大学, 2014: 10−26.KANG D. Study on the method of evaluating the damage efficiency of supercavitation projectile to typical torpedoes[D]. Wuhan: Naval Engineering University, 2014: 10−26. [16] 曹兵. 靶板等效方法研究 [J]. 弹箭与制导学报, 2003, 23(3): 122–123.CAO B. Study on equivalent target experimental methods [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2003, 23(3): 122–123. [17] 杨玉林, 赵国志, 杜忠华, 等. 动能弹侵彻陶瓷与均质钢板的等效关系 [J]. 弹道学报, 2003, 15(4): 32–35. DOI: 10.3969/j.issn.1004-499X.2003.04.007.YANG Y L, ZHAO G Z, DU Z H, et al. RHA equivalence of ceramic impacted by kinetic energy projectiles [J]. Journal of Ballistics, 2003, 15(4): 32–35. DOI: 10.3969/j.issn.1004-499X.2003.04.007. [18] 陈贝贝, 张先锋, 邓佳杰, 等. 弹体侵彻YAG透明陶瓷/玻璃的剩余深度 [J]. 爆炸与冲击, 2020, 40(8): 083301. DOI: 10.11883/bzycj-2019-0372.CHEN B B, ZHANG X F, DENG J J, et al. Residual penetration depth of a projectile into YAG transparent ceramic/glass [J]. Explosion and Shock Waves, 2020, 40(8): 083301. DOI: 10.11883/bzycj-2019-0372. [19] 赵国志, 杨玉林. 动能弹对装甲目标毁伤评估的等效靶模型 [J]. 南京理工大学学报, 2003, 27(5): 509–514. DOI: 10.14177/j.cnki.32-1397n.2003.05.009.ZHAO G Z, YANG Y L. Equivalent surrogates for armor target damage assessment by kinetic energy projectiles [J]. Journal of Nanjing University of Science and Technology, 2003, 27(5): 509–514. DOI: 10.14177/j.cnki.32-1397n.2003.05.009. [20] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2. [21] FORRESTAL M J, TZOU D Y, ASKARI E, et al. Penetration into ductile metal targets with rigid spherical-nose rods [J]. International Journal of Impact Engineering, 1995, 16(5−6): 699–710. DOI: 10.1016/0734-743X(95)00005-U. [22] CHEN X W, LI Q M. Perforation of a thick plate by rigid projectiles [J]. International Journal of Impact Engineering, 2003, 28(7): 743–759. DOI: 10.1016/S0734-743X(02)00152-5. [23] WARREN T L, HANCHAK S J, POORMON K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. DOI: 10.1016/j.ijimpeng.2003.09.047. [24] 孙炜海, 文鹤鸣. 锥头弹丸低速撞击下薄金属靶板的穿透 [J]. 固体力学学报, 2009, 30(4): 361–367. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2009.04.006.SUN W H, WEN H M. Perforation of thin metal plates struck by conical-nosed projectiles at relatively low velocities [J]. Chinese Journal of Solida Mechanics, 2009, 30(4): 361–367. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2009.04.006. [25] HILL R. The mathematical theory of plasticity [M]. Oxford: Oxford University Press, 1950: 125−127. [26] 米双山, 张锡恩, 陶贵明. 钨球侵彻LY-12铝合金靶板的有限元分析 [J]. 爆炸与冲击, 2005, 25(5): 477–480. DOI: 10.11883/1001-1455(2005)05-0477-04.MI S S, ZHANG X E, TAO G M. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target [J]. Explosion and Shock Waves, 2005, 25(5): 477–480. DOI: 10.11883/1001-1455(2005)05-0477-04.