基于耗能模型的超空泡射弹水下侵彻鱼雷等效关系研究

严平 赵垭丽 李昕 魏平

严平, 赵垭丽, 李昕, 魏平. 基于耗能模型的超空泡射弹水下侵彻鱼雷等效关系研究[J]. 爆炸与冲击, 2021, 41(9): 093901. doi: 10.11883/bzycj-2020-0240
引用本文: 严平, 赵垭丽, 李昕, 魏平. 基于耗能模型的超空泡射弹水下侵彻鱼雷等效关系研究[J]. 爆炸与冲击, 2021, 41(9): 093901. doi: 10.11883/bzycj-2020-0240
YAN Ping, ZHAO Yali, LI Xin, WEI Ping. Research on the equivalent relationship of torpedo penetrated by underwater supercavitation projectile based on energy consumption model[J]. Explosion And Shock Waves, 2021, 41(9): 093901. doi: 10.11883/bzycj-2020-0240
Citation: YAN Ping, ZHAO Yali, LI Xin, WEI Ping. Research on the equivalent relationship of torpedo penetrated by underwater supercavitation projectile based on energy consumption model[J]. Explosion And Shock Waves, 2021, 41(9): 093901. doi: 10.11883/bzycj-2020-0240

基于耗能模型的超空泡射弹水下侵彻鱼雷等效关系研究

doi: 10.11883/bzycj-2020-0240
详细信息
    作者简介:

    严 平(1972- ),男,博士,副教授,daer2004@sina.com

    通讯作者:

    赵垭丽(1996- ),女,硕士研究生,13133010901@163.com

  • 中图分类号: O389; TJ410

Research on the equivalent relationship of torpedo penetrated by underwater supercavitation projectile based on energy consumption model

  • 摘要: 超空泡射弹是水下防御技术的研究热点之一。水下毁伤试验费用大,成本高,陆上等效试验是一种可能的替代方案。为此需要获得水下超空泡射弹侵彻条件下目标与相关材料的等效关系。以MK48-5鱼雷为对象,构建由壳体和14个关键部件组成的典型鱼雷结构模型。考虑水介质对侵彻的影响,将水下超空泡射弹侵彻鱼雷的过程分为两个阶段(a. 射弹侵彻水介质和鱼雷壳体,b. 射弹侵彻鱼雷内部关键部件);建立水介质耗能模型和靶板耗能模型;依据极限穿透速度等效原则和能量等效原则,分别得出两个阶段目标和等效靶之间的靶板厚度关系;为了获得射弹垂直命中鱼雷不同方向及不同工况毁伤效果,需要对纵向侵彻全雷和横向侵彻鱼雷战雷段、控制段、燃料舱和后舱雷尾4个典型舱段分别进行研究;并基于此建立了水下侵彻和不同工况条件下射弹侵彻鱼雷的多层等效靶模型。
  • 图  1  MK48鱼雷尺寸结构示意图(单位:mm)

    Figure  1.  Schematic diagram of MK48 torpedo structure (unit: mm)

    图  2  鱼雷关键部件结构模型

    Figure  2.  Structural model of key parts of torpedo

    图  3  鱼雷结构示意图

    Figure  3.  Structure diagram of torpedo

    图  4  纵向侵彻等效靶结构示意图

    Figure  4.  Schematic diagram of equivalent target structure for longitudinal penetration

    图  5  横向侵彻战雷段等效靶结构

    Figure  5.  Schematic diagram of equivalent target structure for transversely penetrating warhead

    图  6  横向侵彻控制段等效靶结构

    Figure  6.  Schematic diagram of equivalent target structure for transversely penetrating control section

    图  7  横向侵彻燃料舱等效靶结构1

    Figure  7.  Schematic 1 of equivalent target structure for transversely penetrating fuel tank

    图  8  横向侵彻燃料舱等效靶结构2

    Figure  8.  Schematic 2 of equivalent target structure for transversely penetrating fuel tank

    图  9  横向侵彻后舱雷尾等效靶结构1

    Figure  9.  Schematic 1 equivalent target structure for transversely penetrating torpedo afterbody

    图  10  横向侵彻后舱雷尾等效靶结构2

    Figure  10.  Schematic 2 equivalent target structure for transversely penetrating torpedo afterbody

    图  11  横向侵彻后舱雷尾等效靶结构示意3

    Figure  11.  Schematic 3 equivalent target structure for transversely penetrating torpedo afterbody

    图  12  射弹侵彻薄靶示意图

    Figure  12.  Schematic diagram of projectile for penetrating thin target

    图  13  射弹纵向侵彻全雷的等效模拟靶(mm)

    Figure  13.  Equivalent simulated target for longitudinal penetration of projectile into mine (mm)

    图  14  射弹横向侵彻鱼雷战雷段等效模拟靶(单位:mm)

    Figure  14.  Equivalent simulated target for transverse penetration of projectiles into warhead (unit: mm)

    图  15  射弹横向侵彻鱼雷控制段的等效模拟靶(单位:mm)

    Figure  15.  Equivalent simulated target for transverse penetration of projectiles into control section (unit: mm)

    图  16  射弹横向侵彻鱼雷燃料舱的等效模拟靶1 (单位:mm)

    Figure  16.  Equivalent simulated target 1 for transverse penetration of projectiles into fuel tank (unit: mm)

    图  17  射弹横向侵彻鱼雷燃料舱的等效模拟靶2 (单位:mm)

    Figure  17.  Equivalent simulated target 2 for transverse penetration of projectiles into fuel tank (unit: mm)

    图  18  射弹横向侵彻鱼雷后舱雷尾等效模拟靶1(mm)

    Figure  18.  Equivalent simulated target 1 for transverse penetration of projectiles into torpedo afterbody (mm)

    图  19  射弹横向侵彻鱼雷后舱雷尾等效模拟靶2(mm)

    Figure  19.  Equivalent simulated target 2 for transverse penetration of projectiles into torpedo afterbody (mm)

    图  20  射弹横向侵彻鱼雷后舱雷尾等效模拟靶3(单位:mm)

    Figure  20.  Equivalent simulated target 3 for transverse penetration of projectiles into torpedo afterbody (unit: mm)

    表  1  制导系统关键部件及其基本特征

    Table  1.   Key components and basic features of guidance system

    部件尺寸/mm中心坐标/mm
    换能器39×156×156(39,0,0)
    发射机65×234×234(169,0,0)
    声自导控制逻辑组件195×39×208(455,91,0)
    接收机195×39×208(455,−91,0)
    线团156×234×234(2600,0,0)
    下载: 导出CSV

    表  2  战斗部系统关键部件及其基本特征

    Table  2.   Key components and basic features of the warhead system

    部件尺寸/mm中心坐标/mm
    战斗部壳体585×208×208(1287,0,0)
    引爆装置65×117×65(1469,0,0)
    下载: 导出CSV

    表  3  控制系统关键部件及其基本特征

    Table  3.   Key components and basic characteristics of control system

    部件尺寸/mm中心坐标/mm
    陀螺等传感器控制组件260×26×182(2158,0,0)
    指令控制组件260×52×182(2158,−104,0)
    电源组件260×39×182(2158,117,0)
    下载: 导出CSV

    表  4  动力推进系统关键部件及其基本特征

    Table  4.   Key components and basic characteristics of propulsion system

    部件尺寸/mm中心坐标/mm
    燃料舱650×247×247(3432,0,0)
    辅助泵195×234×234(4303,0,0)
    发动机390×195×195(4914,0,0)
    泵喷射推进器260×260×260(5590,0,0)
    下载: 导出CSV

    表  5  鱼雷及等效靶材料参数

    Table  5.   Material parameters of torpedo and equivalent target

    材料密度/(g·cm−3屈服强度/MPa弹性模量/GPa
    7039铝合金2.78503.0071.54
    A356铝合金2.80216.6472.40
    TA1钛合金4.51275.00 110.00
    LY-12铝合金2.78325.0068.00
    下载: 导出CSV

    表  6  射弹横向侵彻鱼雷战雷段等效靶的理论计算数据

    Table  6.   The theoretical calculation data of the equivalent target of warhead for the transverse penetration of projectiles

    名称厚度/mm等效靶厚度/mm
    水介质和壳体16.08
    引爆装置2 4
    主装药和战斗部壳体 5.530
    底部壳体3 6
    下载: 导出CSV

    表  7  射弹纵向侵彻全雷等效模型结构表

    Table  7.   Structure table of equivalent model for longitudinal penetration of projectiles into mine

    部位等效厚度/mm相对间隙/mm倾角/(°)
    水介质和壳体8 060
    换能器2 3490
    发射机412790
    自导控制逻辑组件228390
    战斗部30 82990
    控制系统686790
    线团243890
    燃料舱482990
    辅助泵886690
    发动机12 60190
    泵喷射推进器10 66590
    尾部壳体6252150
    下载: 导出CSV

    表  8  射弹横向侵彻鱼雷战雷段等效模型

    Table  8.   Equivalent model for transverse penetration of projectiles into warhead

    部位等效厚度/mm相对间隙/mm倾角/(°)
    水介质和壳体8 090
    引爆装置4169.790
    主装药和战斗部壳体30 81.590
    底部壳体6256.290
    下载: 导出CSV

    表  9  射弹横向侵彻鱼雷控制段等效模型结构表

    Table  9.   Structure table of equivalent model for transverse penetration of projectiles into control section

    名称等效厚度/mm相对间隙/mm倾角/(°)
    水介质和壳体8 090
    电源组件6142.790
    陀螺等传感器控制组件6111.0 90
    指令控制组件698.0 90
    底部壳体6156.790
    下载: 导出CSV

    表  10  射弹横向侵彻鱼雷燃料舱等效模型结构表1

    Table  10.   Structure table 1 of equivalent model for transverse penetration of projectiles into fuel tank

    部位等效厚度/mm等效间隙/mm倾角/(°)
    水介质和顶部壳体8 090
    线团2261.790
    底部壳体6262.790
    下载: 导出CSV

    表  11  射弹横向侵彻鱼雷燃料舱等效模型结构表2

    Table  11.   Structure table 2 of equivalent model for transverse penetration of projectiles into fuel tank

    部位等效厚度/mm等效间隙/mm倾角/(°)
    水介质和顶部壳体8 090
    燃料舱4260.790
    底部壳体6261.790
    下载: 导出CSV

    表  12  射弹横向侵彻后舱雷尾等效模型结构1

    Table  12.   Equivalent model 1 for transverse penetration of projectiles into torpedo afterbody

    部位等效厚度/mm等效间隙/mm倾角/(°)
    水介质和壳体8 090
    辅助泵8258.790
    壳体6259.790
    下载: 导出CSV

    表  13  射弹横向侵彻后舱雷尾等效模型结构2

    Table  13.   Equivalent model 2 for transverse penetration of projectiles into torpedo afterbody

    部位等效厚度/mm等效间隙/mm倾角/(°)
    水介质和壳体 8 090
    发动机12256.790
    壳体 6257.790
    下载: 导出CSV

    表  14  射弹横向侵彻后舱雷尾等效模型结构3

    Table  14.   Equivalent model 3 for transverse penetration of projectiles into torpedo afterbody

    部位等效厚度/mm等效间隙/mm倾角/(°)
    水介质和壳体8 0 30
    泵喷射推进器10257.7 90
    壳体6258.7150
    下载: 导出CSV
  • [1] 金大桥, 王聪, 余锋. 水下超空泡射弹研究综述 [J]. 飞航导弹, 2010(7): 19–23. DOI: 10.16338/j.issn.1009-1319.2010.07.004.

    JIN D Q, WANG C, YU F. A Review of underwater supercavitation projectiles [J]. Winged Missiles Journal, 2010(7): 19–23. DOI: 10.16338/j.issn.1009-1319.2010.07.004.
    [2] FARRAND T, MAGNESS L, BURKINS M. Definition and uses of RHA equivalences for medium caliber targets [C]// Proceedings of the 19th International Symposium of Ballistics. Interlaken, 2001: 1159−1165.
    [3] HELD M. Shaped charge steel equivalence [C]// Proceedings of the 20th International Symposium on Ballistics. Orlando, 2002: 23−27.
    [4] 熊冉, 高欣宝, 张俊坤, 等. 杆式穿甲弹侵彻下陶瓷与均质钢板的等效关系数值分析 [J]. 弹箭与制导学报, 2013, 33(5): 102–104. DOI: 10.15892/j.cnki.djzdxb.2013.05.004.

    XIONG R, GAO X B, ZHANG J K, et al. The simulation on equivalence between ceramic and homogeneous steel impacted by rod armor-piercing projectile [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(5): 102–104. DOI: 10.15892/j.cnki.djzdxb.2013.05.004.
    [5] 周捷, 智小琦, 徐锦波, 等. 小尺寸破片对单兵防护装备的侵彻研究 [J]. 爆炸与冲击, 2019, 39(2): 023304. DOI: 10.11883/bzycj-2018-0023.

    ZHOU J, ZHI X Q, XU J B, et al. Research on penetration of small size fragment to single soldier protection equipment [J]. Explosion and Shock Waves, 2019, 39(2): 023304. DOI: 10.11883/bzycj-2018-0023.
    [6] 曹兵. 603靶板抗EFP侵彻等效靶实验研究 [J]. 爆破器材, 2007, 36(1): 36–39. DOI: 10.3969/j.issn.1001-8352.2007.01.012.

    CAO B. Experimental study on the equivalent target of 603 armor penetrated by EFP [J]. Explosive Materials, 2007, 36(1): 36–39. DOI: 10.3969/j.issn.1001-8352.2007.01.012.
    [7] 李运禄. EFP/破片组合式防空反导战斗部对反舰导弹毁伤的数值模拟研究 [D]. 太原: 中北大学, 2016: 58−81.

    LI Y L. Research on damage performance of EFP/fragment combined air defense and antimissile warhead to anti-ship missile [D]. Taiyuan: North University of China, 2016: 58−81.
    [8] 张培忠, 何永, 高树滋. 相似模拟法在脱壳穿甲弹威力靶设计中的应用 [J]. 南京理工大学学报, 2000, 24(1): 6–8. DOI: 10.14177/j.cnki.32-1397n.2000.01.002.

    ZHANG P Z, HE Y, GAO S Z. Application of similitude method in the design of sabot armor piercing projectile power target [J]. Journal of Nanjing University of Science and Technology, 2000, 24(1): 6–8. DOI: 10.14177/j.cnki.32-1397n.2000.01.002.
    [9] 赵金库. 小口径尾翼稳定脱壳穿甲弹技术研究 [D]. 南京: 南京理工大学, 2010: 58−72. DOI: 10.7666/d.y1697774.

    ZHAO J K. Research on the technology of small caliber tail stabilized shelled penetrator [D]. Nanjing: Nanjing University of Science and Technology, 2010: 58−72. DOI: 10.7666/d.y1697774.
    [10] 周岩, 唐平, 常敬臻, 等. 舰舷结构与均质靶板等效关系的基本方法 [J]. 弹道学报, 2008, 20(1): 30–34.

    ZHOU Y, TANG P, CHANG J Z, et al. Basic method for equivalent relation between structure of warship and homogeneous target [J]. Journal of Ballistics, 2008, 20(1): 30–34.
    [11] 刘亭, 刘轶强. 射弹侵彻下鱼、水雷壳体与均质钢的等效关系 [J]. 水雷战与舰船防护, 2014, 22(4): 8–12, 16.

    LIU T, LIU Y Q. Equivalent relation of torpedo and sea mine shell and homogeneous steel under projectile penetration [J]. Mine Warfare & Ship Self-Defence, 2014, 22(4): 8–12, 16.
    [12] 尹韶平, 刘瑞生. 鱼雷总体技术 [M]. 北京: 国防工业出版社, 2011.

    YIN S P, LIU R S. Torpedo overall technology [M]. Beijing: National Defense Industry Press, 2011.
    [13] 石秀华, 王晓娟. 水中兵器概论-鱼雷分册 [M]. 西安: 西北工业大学出版社, 2005: 1−11.

    SHI X H, WANG X J. Introduction to underwater weapons torpedo section [M]. Xi’an: Northwestern Polytechnical University Press, 2005: 1−11.
    [14] 李向东, 杜忠华. 目标易损性 [M]. 北京: 北京理工大学出版社, 2013.

    LI X D, DU Z H. Target vulnerability [M]. Beijing: Beijing Institute of Technology Press, 2013.
    [15] 康德. 超空泡射弹对典型鱼雷的毁伤效能评估方法研究 [D]. 武汉: 海军工程大学, 2014: 10−26.

    KANG D. Study on the method of evaluating the damage efficiency of supercavitation projectile to typical torpedoes[D]. Wuhan: Naval Engineering University, 2014: 10−26.
    [16] 曹兵. 靶板等效方法研究 [J]. 弹箭与制导学报, 2003, 23(3): 122–123.

    CAO B. Study on equivalent target experimental methods [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2003, 23(3): 122–123.
    [17] 杨玉林, 赵国志, 杜忠华, 等. 动能弹侵彻陶瓷与均质钢板的等效关系 [J]. 弹道学报, 2003, 15(4): 32–35. DOI: 10.3969/j.issn.1004-499X.2003.04.007.

    YANG Y L, ZHAO G Z, DU Z H, et al. RHA equivalence of ceramic impacted by kinetic energy projectiles [J]. Journal of Ballistics, 2003, 15(4): 32–35. DOI: 10.3969/j.issn.1004-499X.2003.04.007.
    [18] 陈贝贝, 张先锋, 邓佳杰, 等. 弹体侵彻YAG透明陶瓷/玻璃的剩余深度 [J]. 爆炸与冲击, 2020, 40(8): 083301. DOI: 10.11883/bzycj-2019-0372.

    CHEN B B, ZHANG X F, DENG J J, et al. Residual penetration depth of a projectile into YAG transparent ceramic/glass [J]. Explosion and Shock Waves, 2020, 40(8): 083301. DOI: 10.11883/bzycj-2019-0372.
    [19] 赵国志, 杨玉林. 动能弹对装甲目标毁伤评估的等效靶模型 [J]. 南京理工大学学报, 2003, 27(5): 509–514. DOI: 10.14177/j.cnki.32-1397n.2003.05.009.

    ZHAO G Z, YANG Y L. Equivalent surrogates for armor target damage assessment by kinetic energy projectiles [J]. Journal of Nanjing University of Science and Technology, 2003, 27(5): 509–514. DOI: 10.14177/j.cnki.32-1397n.2003.05.009.
    [20] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
    [21] FORRESTAL M J, TZOU D Y, ASKARI E, et al. Penetration into ductile metal targets with rigid spherical-nose rods [J]. International Journal of Impact Engineering, 1995, 16(5−6): 699–710. DOI: 10.1016/0734-743X(95)00005-U.
    [22] CHEN X W, LI Q M. Perforation of a thick plate by rigid projectiles [J]. International Journal of Impact Engineering, 2003, 28(7): 743–759. DOI: 10.1016/S0734-743X(02)00152-5.
    [23] WARREN T L, HANCHAK S J, POORMON K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. DOI: 10.1016/j.ijimpeng.2003.09.047.
    [24] 孙炜海, 文鹤鸣. 锥头弹丸低速撞击下薄金属靶板的穿透 [J]. 固体力学学报, 2009, 30(4): 361–367. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2009.04.006.

    SUN W H, WEN H M. Perforation of thin metal plates struck by conical-nosed projectiles at relatively low velocities [J]. Chinese Journal of Solida Mechanics, 2009, 30(4): 361–367. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2009.04.006.
    [25] HILL R. The mathematical theory of plasticity [M]. Oxford: Oxford University Press, 1950: 125−127.
    [26] 米双山, 张锡恩, 陶贵明. 钨球侵彻LY-12铝合金靶板的有限元分析 [J]. 爆炸与冲击, 2005, 25(5): 477–480. DOI: 10.11883/1001-1455(2005)05-0477-04.

    MI S S, ZHANG X E, TAO G M. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target [J]. Explosion and Shock Waves, 2005, 25(5): 477–480. DOI: 10.11883/1001-1455(2005)05-0477-04.
  • 加载中
图(20) / 表(14)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  229
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 修回日期:  2021-02-18
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回