恒温法测爆热的快速系统辨识方法

杨杰 贺元吉 赵宏伟 徐明利 高洪泉

杨杰, 贺元吉, 赵宏伟, 徐明利, 高洪泉. 恒温法测爆热的快速系统辨识方法[J]. 爆炸与冲击, 2021, 41(7): 074101. doi: 10.11883/bzycj-2020-0249
引用本文: 杨杰, 贺元吉, 赵宏伟, 徐明利, 高洪泉. 恒温法测爆热的快速系统辨识方法[J]. 爆炸与冲击, 2021, 41(7): 074101. doi: 10.11883/bzycj-2020-0249
YANG Jie, HE Yuanji, ZHAO Hongwei, XU Mingli, GAO Hongquan. A rapid system identification method for measuring explosion heat by the constant temperature method[J]. Explosion And Shock Waves, 2021, 41(7): 074101. doi: 10.11883/bzycj-2020-0249
Citation: YANG Jie, HE Yuanji, ZHAO Hongwei, XU Mingli, GAO Hongquan. A rapid system identification method for measuring explosion heat by the constant temperature method[J]. Explosion And Shock Waves, 2021, 41(7): 074101. doi: 10.11883/bzycj-2020-0249

恒温法测爆热的快速系统辨识方法

doi: 10.11883/bzycj-2020-0249
详细信息
    作者简介:

    杨 杰(1982- ),男,博士,助理研究员,yangjieflying@126.com

  • 中图分类号: O381; O159

A rapid system identification method for measuring explosion heat by the constant temperature method

  • 摘要: 为了降低经典恒温法爆热测量中出现系统故障而导致测量失败的风险,提出了基于故障前内桶水温升曲线辨识爆热值的测量方法。首先,分析了测量过程的传热机制,建立了量热计的传热模型,解算得到了各测量阶段的内桶水温升曲线;然后,基于系统辨识理论,提出了中间参数的辨识算法,并基于隔离易振荡参数的思路,给出了修正温升与爆热的快速系统辨识算法,通过误差分析证明了爆热辨识值近似收敛于经典值;最后,应用爆热值分布在4~9 kJ/g的8个炸药样品的实验数据对算法进行了检验,并提出了判断收敛时刻的实验判据。结果表明,辨识算法有效隔离了振荡参数的影响,对内桶水温度变化有较强的预测能力,爆热辨识值能在40 min(主末期1/3)内快速稳定地收敛到3.5%的相对误差上限水平内,实验判据能较准确地判断爆热辨识值收敛时刻。本方法理论上还可拓展至绝热法爆热值计算。
  • 图  1  量热计结构

    Figure  1.  Calorimeter structure

    图  2  爆炸产物的传热过程

    Figure  2.  Heat transfer process of explosive product

    图  3  实验模拟的各参数辨识值

    Figure  3.  Identified values of each parameter in an experiment simulation

    图  4  内外桶温度随采样时间的变化

    Figure  4.  Variations of inner and outer barrel temperature with sampling time

    图  5  内桶水主末期温度曲线的拟合残差均方根

    Figure  5.  RMS of fitting residuals of inner barrel water temperature curve at main and end stage

    图  6  爆热系统辨识值和相对误差随测量时间的收敛

    Figure  6.  Convergence rule of system identify value and relative error of explosive heat with measurement time

    图  7  相对误差上限水平和平均水平随测量时间的变化

    Figure  7.  Variations of upper limit level and average level of relative error with measurement time

    表  1  爆热辨识值的收敛情况

    Table  1.   Convergent status of system identify value of explosion heat

    样本经典法爆热值/
    (kJ·g−1
    相对误差上限水平为3.5%时
    对应最小辨识时间/min
    极限收敛水平/
    %
    17.765400.024 5
    27.710151.190 8
    37.935250.667 8
    48.112350.885 7
    54.875253.221 6
    65.763331.880 1
    76.511401.826 4
    86.540141.987 1
    下载: 导出CSV
  • [1] 王晓峰, 冯晓军, 肖奇. 温压炸药爆炸能量的测量方法 [J]. 火炸药学报, 2013, 36(2): 9–12. DOI: 10.3969/j.issn.1007-7812.2013.02.002.

    WANG X F, FENG X J, XIAO Q. Method for measuring energy of explosion of thermobaric explosives [J]. Chinese Journal of Explosives and Propellants, 2013, 36(2): 9–12. DOI: 10.3969/j.issn.1007-7812.2013.02.002.
    [2] 金朋刚, 郭炜, 任松涛, 等. TNT密闭环境中能量释放特性研究 [J]. 爆破器材, 2014, 43(2): 10–14. DOI: 10.3969/j.issn.1001-8352.2014.02.003.

    JIN P G, GUO W, REN S T, et al. Research on TNT energy release characteristics in enclosed condition [J]. Explosive Materials, 2014, 43(2): 10–14. DOI: 10.3969/j.issn.1001-8352.2014.02.003.
    [3] 曹威, 何中其, 陈网桦, 等. 水下爆炸法测量含铝炸药后燃效应 [J]. 含能材料, 2012, 20(2): 229–233. DOI: 10.3969/j.issn.1006-9941.2012.02.020.

    CAO W, HE Z Q, CHEN W H, et al. Measurement of afterburning effect of aluminized explosives by underwater explosion method [J]. Chinese Journal of Energetic Materials, 2012, 20(2): 229–233. DOI: 10.3969/j.issn.1006-9941.2012.02.020.
    [4] 范荣桂, 王建灵. 炸药爆热的恒温法测试研究 [J]. 煤矿爆破, 2001(4): 9–11.
    [5] 周霖, 谢中元, 陈勇. 炸药水下爆炸气泡脉动周期工程计算方法 [J]. 兵工学报, 2009, 30(9): 1202–1205. DOI: 10.3321/j.issn:1000-1093.2009.09.010.

    ZHOU L, XIE Z Y, CHEN Y. An engineering calculation method on the bubble pulse period of underwater explosion [J]. Acta Armamentarii, 2009, 30(9): 1202–1205. DOI: 10.3321/j.issn:1000-1093.2009.09.010.
    [6] 俞统昌, 尹孟超. 混合炸药爆热的经验估算 [J]. 火炸药, 1984(2): 50–55.
    [7] 韩早. 温压炸药能量参数计算与释能规律研究[D]. 南京: 南京理工大学, 2015.
    [8] HERNÁNDEZ-RIVERA S P, INFANTE-CASTILLO R. Predicting heats of explosion of nitrate esters through their NBO charges and 15N NMR chemical shifts on the nitro groups [J]. Computational and Theoretical Chemistry, 2011, 963(2−3): 279–283. DOI: 10.1016/j.comptc.2010.10.038.
    [9] KESHAVARZ M H. Quick estimation of heats of detonation of aromatic energetic compounds from structural parameters [J]. Journal of Hazardous Materials, 2007, 143(1−2): 549–554. DOI: 10.1016/j.jhazmat.2006.09.078.
    [10] 蔡星会, 白少峰, 孙新利, 等. 基于人工神经网络的炸药爆炸参数预测 [J]. 四川兵工学报, 2010, 31(1): 1–3. DOI: 10.3969/j.issn.1006-0707.2010.01.001.
    [11] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.
    [12] 宋浦, 杨卓, 赵向军, 等. 含铝炸药爆炸光辐射能量输出特性研究 [J]. 火炸药学报, 2020, 43(3): 271–275. DOI: 10.14077/j.issn.1007-7812.202003013.

    SONG P, YANG Z, ZHAO X J, et al. Study on the energy output characteristics of light radiation from aluminized explosive explosion [J]. Chinese Journal of Explosives and Propellants, 2020, 43(3): 271–275. DOI: 10.14077/j.issn.1007-7812.202003013.
    [13] 张玉磊, 翟红波, 李芝绒, 等. TNT和温压炸药的爆炸火球表面温度对比试验研究 [J]. 爆破器材, 2015, 44(5): 23–26. DOI: 10.3969/j.issn.1001-8352.2015.05.006.

    ZHANG Y L, ZHAI H B, LI Z R, et al. Experimental research on the contrast of the fireball’s surface temperature of TNT and thermobaric explosive [J]. Explosive Materials, 2015, 44(5): 23–26. DOI: 10.3969/j.issn.1001-8352.2015.05.006.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  692
  • HTML全文浏览量:  204
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-10-21
  • 网络出版日期:  2021-07-06
  • 刊出日期:  2021-07-05

目录

    /

    返回文章
    返回