• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

考虑摩擦因数变化的弹体高速侵彻混凝土质量侵蚀模型研究

刘均伟 张先锋 刘闯 陈海华 王季鹏 熊玮

吴昊, 方秦, 龚自明. 考虑刚性弹弹头形状的混凝土(岩石)靶体侵彻深度半理论分析[J]. 爆炸与冲击, 2012, 32(6): 573-580. doi: 10.11883/1001-1455(2012)06-0573-08
引用本文: 刘均伟, 张先锋, 刘闯, 陈海华, 王季鹏, 熊玮. 考虑摩擦因数变化的弹体高速侵彻混凝土质量侵蚀模型研究[J]. 爆炸与冲击, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250
WU Hao, FANGQin, GONG Zi-ming. Semi-theoreticalanalysesforpenetrationdepthofrigidprojectileswithdifferentnosegeometriesintoconcrete(rock)target[J]. Explosion And Shock Waves, 2012, 32(6): 573-580. doi: 10.11883/1001-1455(2012)06-0573-08
Citation: LIU Junwei, ZHANG Xianfeng, LIU Chuang, CHEN Haihua, WANG Jipeng, XIONG Wei. Study on mass erosion model of projectile penetrating concrete at high speed considering variation of friction coefficient[J]. Explosion And Shock Waves, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250

考虑摩擦因数变化的弹体高速侵彻混凝土质量侵蚀模型研究

doi: 10.11883/bzycj-2020-0250
基金项目: 国家自然科学基金(11790292);国家自然科学基金委员会与中国工程物理研究院联合基金(U1730101);中央高校基本科研业务费专项(30919011401)
详细信息
    作者简介:

    刘均伟(1996- ),男,博士研究生,717904682@qq.com

    通讯作者:

    张先锋(1978- ),男,博士,教授,博士生导师,lynx@njust.edu.com

  • 中图分类号: O385

Study on mass erosion model of projectile penetrating concrete at high speed considering variation of friction coefficient

  • 摘要: 弹体在高速侵彻混凝土介质时,由于弹靶之间强烈的局部作用,导致弹体发生质量损失和弹头钝化。为进一步探究弹体高速侵彻混凝土靶质量侵蚀效应及其影响因素,基于热熔化机制及变摩擦因数模型,考虑弹体侵彻过程中头部形状变化,修正了弹体高速侵彻混凝土质量侵蚀模型。为验证模型的可靠性,基于30 mm弹道炮平台,开展了卵形弹体高速(700~1 000 m/s)侵彻典型混凝土靶体实验,获得了弹体高速侵彻质量侵蚀结果。结合理论模型对本文实验及文献实验数据进行了对比分析计算,验证了本文修正模型的可靠性。结果表明:弹体侵彻过程中,滑动摩擦项占总摩擦力的10%~40%,它对弹体侵彻过程的影响不能被忽略;考虑摩擦因数变化的质量侵蚀模型预测结果与已有实验数据吻合得较好;与本文实验数据的最大误差不超过7%,能较准确地预测不同工况下弹体的质量损失。
  • 图  1  侵彻过程中弹体头部受力

    Figure  1.  Force diagram projectile head during penetration

    图  2  计算流程

    Figure  2.  Flow chart of calculation

    图  3  摩擦力比值的计算结果

    Figure  3.  Calculation results of friction ratio

    图  4  实验弹靶

    Figure  4.  Projectile and target used in penetration experiments

    图  5  高速摄影记录的弹体撞击靶体过程

    Figure  5.  Process of projectile impacting target recorded by high speed photography

    图  6  实验前、后弹体轮廓对比

    Figure  6.  Projectile profiles before and after experiment

    图  7  弹体质量侵蚀预测结果与实验结果对比

    Figure  7.  Comparison of prediction results of projectile mass erosion with experimental results

    图  8  模型预测结果与实验回收弹体对比

    Figure  8.  Comparison between the predicted results of the model and the recovered projectile

    图  9  弹体质量侵蚀预测结果与实验结果对比

    Figure  9.  Comparison of prediction results of projectile mass erosion with test results

    表  1  实验弹靶参数

    Table  1.   Parameters of projectile and target

    fc/MPaρt/(kg·m−3骨料弹体材料Yp/MPaρp/(kg·m−3m0/kgd/mmL/dφ
    352 300石灰石30CrMnSiA1 2437 8500.5533064
    下载: 导出CSV

    表  2  各工况弹靶参数

    Table  2.   Parameters of projectile and target

    工况fc/MPaρt/(kg·m−3骨料弹体材料Yp/MPaρp/(kg·m−3m0/kgd/mmL/dφ
    1[1]13.52 000石英石 74340钢1 4817 8500.06412.96.883.00
    2[1]13.52 000石英石 74340钢1 4817 8500.06412.96.884.25
    3[1]21.62 000石英石 74340钢1 4817 8500.06412.96.883.00
    4[1]21.62 000石英石 74340钢1 4817 8500.06412.96.884.25
    5[1]62.82 300石英石 74340钢1 4817 8500.47820.310.003.00
    6[1]51.02 300石英石 74340钢1 4817 8501.60030.510.003.00
    7[2]58.42 320石灰石 34340钢
    AerMet100
    1 481
    1 820
    7 8500.47820.310.003.00
    8[2]58.42 320石灰石 34340钢
    AerMet100
    1 481
    1 820
    7 8501.62030.510.003.00
    9[2]34.82 300石灰石 34340钢
    Tc4
    1 300
    1 030
    7 8500.15514.010.004.25
    10[2]48.62 300石灰石 360Si2Mn
    20钢
    1 300
    450
    7 8500.15514.010.004.25
    11[2]61.32 300石灰石 360Si2Mn
    45钢
    1 300
    680
    7 8500.15514.010.004.25
    12[2]76.42 300石灰石 360Si2Mn
    35CrMnSi
    1 300
    1 540
    7 8500.15514.010.004.25
    下载: 导出CSV

    表  3  不同速度下弹体的质量损失率与长度缩短率

    Table  3.   Mass loss rate and length shortening rate of projectile body at different speeds

    v/(m·s−1γ/%δ/%
    7303.991.50
    8444.951.55
    9045.751.72
    9505.911.88
    1 0026.332.17
    下载: 导出CSV

    表  4  弹体质量侵蚀预测结果与实验结果对比

    Table  4.   Comparison of prediction results of projectile mass erosion with experimental results

    v/(m·s−1γ/%
    实验文献[12]方法文献[13]方法修正模型
    7363.994.704.063.90
    8444.956.095.194.92
    9045.756.865.855.52
    9505.917.476.365.98
    1 0026.338.176.966.52
    下载: 导出CSV
  • [1] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743x(95)00048-f.
    [2] FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
    [3] 何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.

    HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles high-velocity penetration into concrete target [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
    [4] MU Z C, ZHANG W. An investigation on mass loss of ogival projectiles penetrating concrete targets [J]. International Journal of Impact Engineering, 2011, 38(8−9): 770–778. DOI: 10.1016/j.ijimpeng.2011.04.002.
    [5] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55.

    WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55.
    [6] SILLING S A, FORRESTAL M J. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets [J]. International Journal of Impact Engineering, 2007, 34(11): 1814–1820. DOI: 10.1016/j.ijimpeng.2006.10.008.
    [7] WU H J, HUANG F L, WANG Y N, et al. Mass loss and nose shape change on ogive-nose steel projectiles during concrete penetration [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(3−4): 273–280. DOI: 10.1515/ijnsns-2011-0047.
    [8] WEN H M, YANG Y, HE T. Effects of abrasion on the penetration of ogival-nosed projectiles into concrete targets [J]. Latin American Journal of Solids and Structures, 2010, 7(4): 413–422. DOI: 10.1590/S1679-78252010000400003.
    [9] ZHAO J, CHEN X W, JIN F N, et al. Depth of penetration of high-speed penetrator with including the effect of mass abrasion [J]. International Journal of Impact Engineering, 2010, 37(9): 971–979. DOI: 10.1016/j.ijimpeng.2010.03.008.
    [10] JONES S E, FOSTER J C, TONESS O A, et al. An estimate for mass loss from high velocity steel penetrators [C] // Proceedings of ASME 2002 Pressure Vessels and Piping Conference. Vancouver: ASME, 2002. DOI: 10.1115/PVP2002-1149.
    [11] 陈小伟, 杨世全, 何丽灵. 动能侵彻弹体的质量侵蚀模型分析 [J]. 力学学报, 2009, 41(5): 739–747. DOI: 10.3321/j.issn:0459-1879.2009.05.017.

    CHEN X W, YANG S Q, HE L L. Modeling on mass abrasion of kinetic energy penetrator [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 739–747. DOI: 10.3321/j.issn:0459-1879.2009.05.017.
    [12] HE L L, CHEN X W, HE X. Parametric study on mass loss of penetrators [J]. Acta Mechanica Sinica, 2010, 26(4): 585–597. DOI: 10.1007/s10409-010-0341-8.
    [13] 欧阳昊, 陈小伟. 混凝土骨料对高速侵彻弹体质量侵蚀的影响分析 [J]. 爆炸与冲击, 2019, 39(7): 073102. DOI: 10.11883/bzycj-2018-0068.

    OUYANG H, CHEN X W. Analysis of mass abrasion of high-speed penetrator influencedby aggregate in concrete target [J]. Explosion and ShockWaves, 2019, 39(7): 073102. DOI: 10.11883/bzycj-2018-0068.
    [14] OUYANG H, CHEN X W. Modeling on mass loss and nose blunting of high-speed penetrator into concrete target [J]. International Journal of Protective Structures, 2019, 10(1): 3–25. DOI: 10.1177/2041419618784749.
    [15] 何丽灵, 陈小伟, 夏源明. 侵彻混凝土弹体磨蚀的若干研究进展 [J]. 兵工学报, 2010, 31(7): 950–966.

    HE L L, CHEN X W, XIA Y M. A review on the mass loss of projectile [J]. Acta Armamentarii, 2010, 31(7): 950–966.
    [16] LUK V K, FORRESTAL M J. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles [J]. International Journal of Impact Engineering, 1987, 6(4): 291–301. DOI: 10.1016/0734-743X(87)90096-0.
    [17] DAVIS R N, NEELY A M, JONES S E. Mass loss and blunting during high-speed penetration [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004, 218(9): 1053–1062. DOI: 10.1243/0954406041991189.
    [18] CHEN X W, HE L L, YANG S Q. Modeling on mass abrasion of kinetic energy penetrator [J]. European Journal of Mechanics-A: Solids, 2010, 29(1): 7–17. DOI: 10.1016/j.euromechsol.2009.07.006.
    [19] KLEPACZKO J R, HUGHES M L. Scaling of wear in kinetic energy penetrators [J]. International Journal of ImpactEngineering, 2005, 31(4): 435–459. DOI: 10.1016/j.ijimpeng.2004.02.006.
    [20] KLEPACZKO J R. Surface layer thermodynamics of steel penetrators at high and very high sliding velocities: A709014 [R]. Washington: Storming Media, 2001.
    [21] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
  • 期刊类型引用(18)

    1. 高飞,邓树新,张国凯,纪玉国,刘晨康,王明洋. 缩比模型弹侵彻岩石靶尺寸效应试验研究与理论分析. 兵工学报. 2023(12): 3601-3612 . 百度学术
    2. 朱少平,王志亮,熊峰. 卵形弹丸对混凝土侵彻动力响应数值研究. 合肥工业大学学报(自然科学版). 2022(02): 243-250 . 百度学术
    3. 邵伟,范锦彪,耿宇飞,王玮. 基于微元法的侵彻体弹头摩擦升温计算方法. 探测与控制学报. 2022(02): 34-40 . 百度学术
    4. 章毅,胡枫,吴昊,王安宝. 高强混凝土介质侵彻系数计算方法. 防护工程. 2021(02): 31-38 . 百度学术
    5. 张丁山,谷鸿平,徐笑,张博,吕永柱. 截卵形头部平台直径对初始侵彻弹道偏转的影响. 高压物理学报. 2021(05): 138-144 . 百度学术
    6. 吴飚,任辉启,陈力,杨建超,黄家蓉,高伟亮,金栋梁. 弹体侵彻混凝土尺度效应试验研究与理论分析. 防护工程. 2020(02): 1-10 . 百度学术
    7. 彭永,卢芳云,方秦,吴昊,李翔宇. 弹体侵彻混凝土靶体的尺寸效应分析. 爆炸与冲击. 2019(11): 58-68 . 本站查看
    8. 张学伦,汪衡,谭正军,王昭明. 混凝土靶边界效应与弹丸长径比关联性的研究. 兵器装备工程学报. 2018(04): 11-13+18 . 百度学术
    9. 刘宗伟,武海军,张学伦,刘俞平,熊国松,谭正军,曾令清. 高超弹体侵蚀机理及抗侵蚀设计研究. 兵器装备工程学报. 2017(04): 46-49 . 百度学术
    10. 李艳,范文,赵均海,翟越. 中低速长杆弹侵彻半无限岩石靶的动态响应研究. 工程力学. 2017(09): 139-149 . 百度学术
    11. 薛建锋,沈培辉,王晓鸣. 基于层裂机理的弹体侵彻混凝土的工程模型. 国防科技大学学报. 2017(03): 194-200 . 百度学术
    12. 曹扬悦也,蒋志刚,谭清华,蒙朝美. 基于Hoek-Brown准则的混凝土-岩石类靶侵彻模型. 振动与冲击. 2017(05): 48-53+60 . 百度学术
    13. 薛建锋,沈培辉,王晓鸣. 不同头部形状弹体侵彻混凝土的试验研究. 兵工自动化. 2016(02): 75-78 . 百度学术
    14. 邓佳杰,张先锋,乔治军,郭磊,何勇,陈东东. 卵形弹体侵彻预开孔靶理论分析. 爆炸与冲击. 2016(05): 625-632 . 本站查看
    15. 张学伦,刘宗伟. 弹丸CRH值对侵彻混凝土深度影响研究. 兵器装备工程学报. 2016(10): 31-34 . 百度学术
    16. 薛建锋,沈培辉,王晓鸣. 钻地弹斜侵彻混凝土靶的工程计算模型. 航空学报. 2016(06): 1899-1911 . 百度学术
    17. 张丁山,吕永柱,周涛,谷鸿平,张立建. 侵彻战斗部引信前后置过载的影响因素. 探测与控制学报. 2016(06): 41-45+50 . 百度学术
    18. 彭永,方秦,吴昊,孔祥振,肖云凯. 不同头部形状弹体侵彻混凝土靶体的终点弹道参数分析. 兵工学报. 2014(S2): 128-134 . 百度学术

    其他类型引用(11)

  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  645
  • HTML全文浏览量:  306
  • PDF下载量:  116
  • 被引次数: 29
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-11-29
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回