Study on mass erosion model of projectile penetrating concrete at high speed considering variation of friction coefficient
-
摘要: 弹体在高速侵彻混凝土介质时,由于弹靶之间强烈的局部作用,导致弹体发生质量损失和弹头钝化。为进一步探究弹体高速侵彻混凝土靶质量侵蚀效应及其影响因素,基于热熔化机制及变摩擦因数模型,考虑弹体侵彻过程中头部形状变化,修正了弹体高速侵彻混凝土质量侵蚀模型。为验证模型的可靠性,基于30 mm弹道炮平台,开展了卵形弹体高速(700~1 000 m/s)侵彻典型混凝土靶体实验,获得了弹体高速侵彻质量侵蚀结果。结合理论模型对本文实验及文献实验数据进行了对比分析计算,验证了本文修正模型的可靠性。结果表明:弹体侵彻过程中,滑动摩擦项占总摩擦力的10%~40%,它对弹体侵彻过程的影响不能被忽略;考虑摩擦因数变化的质量侵蚀模型预测结果与已有实验数据吻合得较好;与本文实验数据的最大误差不超过7%,能较准确地预测不同工况下弹体的质量损失。Abstract: When the projectile penetrates into the concrete medium at high speed, the mass loss and nose blunting occur due to the strong local interaction between the projectile and the target. In order to further explore the mass erosion effect of high-speed projectile penetrating concrete target and its influencing factors, based on the thermal melting mechanism and variable friction coefficient model, the mass erosion model of high-speed projectile penetrating concrete target was modified considering the change of projectile nose shape during penetration. In order to verify the reliability of the model, based on the 30 mm ballistic gun platform, the oval projectile penetrating typical concrete targets at high velocities ranging from 700 to 1000 m/s was carried out, and the mass erosion results of high-speed penetration were obtained. Combined with the theoretical model, the reliability of the modified model is verified by analyzing the test data in this paper and the literature. The results show that the sliding friction term accounts for 10%−40% of the total friction in the process of projectile penetration, and its influence on the penetration process can’t be ignored. The prediction results of mass erosion model considering the variation of friction coefficient are in good agreement with the existing test data, and the maximum error with the test data in this paper is less than 7%, which can accurately predict the mass loss of projectile under different working conditions.
-
Key words:
- high speed penetration /
- mass loss /
- head shape /
- friction coefficient
-
表 1 实验弹靶参数
Table 1. Parameters of projectile and target
fc/MPa ρt/(kg·m−3) 骨料 弹体材料 Yp/MPa ρp/(kg·m−3) m0/kg d/mm L/d φ 35 2 300 石灰石 30CrMnSiA 1 243 7 850 0.553 30 6 4 表 2 各工况弹靶参数
Table 2. Parameters of projectile and target
工况 fc/MPa ρt/(kg·m−3) 骨料 弹体材料 Yp/MPa ρp/(kg·m−3) m0/kg d/mm L/d φ 1[1] 13.5 2 000 石英石 7 4340钢 1 481 7 850 0.064 12.9 6.88 3.00 2[1] 13.5 2 000 石英石 7 4340钢 1 481 7 850 0.064 12.9 6.88 4.25 3[1] 21.6 2 000 石英石 7 4340钢 1 481 7 850 0.064 12.9 6.88 3.00 4[1] 21.6 2 000 石英石 7 4340钢 1 481 7 850 0.064 12.9 6.88 4.25 5[1] 62.8 2 300 石英石 7 4340钢 1 481 7 850 0.478 20.3 10.00 3.00 6[1] 51.0 2 300 石英石 7 4340钢 1 481 7 850 1.600 30.5 10.00 3.00 7[2] 58.4 2 320 石灰石 3 4340钢
AerMet1001 481
1 8207 850 0.478 20.3 10.00 3.00 8[2] 58.4 2 320 石灰石 3 4340钢
AerMet1001 481
1 8207 850 1.620 30.5 10.00 3.00 9[2] 34.8 2 300 石灰石 3 4340钢
Tc41 300
1 0307 850 0.155 14.0 10.00 4.25 10[2] 48.6 2 300 石灰石 3 60Si2Mn
20钢1 300
4507 850 0.155 14.0 10.00 4.25 11[2] 61.3 2 300 石灰石 3 60Si2Mn
45钢1 300
6807 850 0.155 14.0 10.00 4.25 12[2] 76.4 2 300 石灰石 3 60Si2Mn
35CrMnSi1 300
1 5407 850 0.155 14.0 10.00 4.25 表 3 不同速度下弹体的质量损失率与长度缩短率
Table 3. Mass loss rate and length shortening rate of projectile body at different speeds
v/(m·s−1) γ/% δ/% 730 3.99 1.50 844 4.95 1.55 904 5.75 1.72 950 5.91 1.88 1 002 6.33 2.17 -
[1] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743x(95)00048-f. [2] FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6. [3] 何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles high-velocity penetration into concrete target [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06. [4] MU Z C, ZHANG W. An investigation on mass loss of ogival projectiles penetrating concrete targets [J]. International Journal of Impact Engineering, 2011, 38(8−9): 770–778. DOI: 10.1016/j.ijimpeng.2011.04.002. [5] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55.WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55. [6] SILLING S A, FORRESTAL M J. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets [J]. International Journal of Impact Engineering, 2007, 34(11): 1814–1820. DOI: 10.1016/j.ijimpeng.2006.10.008. [7] WU H J, HUANG F L, WANG Y N, et al. Mass loss and nose shape change on ogive-nose steel projectiles during concrete penetration [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(3−4): 273–280. DOI: 10.1515/ijnsns-2011-0047. [8] WEN H M, YANG Y, HE T. Effects of abrasion on the penetration of ogival-nosed projectiles into concrete targets [J]. Latin American Journal of Solids and Structures, 2010, 7(4): 413–422. DOI: 10.1590/S1679-78252010000400003. [9] ZHAO J, CHEN X W, JIN F N, et al. Depth of penetration of high-speed penetrator with including the effect of mass abrasion [J]. International Journal of Impact Engineering, 2010, 37(9): 971–979. DOI: 10.1016/j.ijimpeng.2010.03.008. [10] JONES S E, FOSTER J C, TONESS O A, et al. An estimate for mass loss from high velocity steel penetrators [C] // Proceedings of ASME 2002 Pressure Vessels and Piping Conference. Vancouver: ASME, 2002. DOI: 10.1115/PVP2002-1149. [11] 陈小伟, 杨世全, 何丽灵. 动能侵彻弹体的质量侵蚀模型分析 [J]. 力学学报, 2009, 41(5): 739–747. DOI: 10.3321/j.issn:0459-1879.2009.05.017.CHEN X W, YANG S Q, HE L L. Modeling on mass abrasion of kinetic energy penetrator [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 739–747. DOI: 10.3321/j.issn:0459-1879.2009.05.017. [12] HE L L, CHEN X W, HE X. Parametric study on mass loss of penetrators [J]. Acta Mechanica Sinica, 2010, 26(4): 585–597. DOI: 10.1007/s10409-010-0341-8. [13] 欧阳昊, 陈小伟. 混凝土骨料对高速侵彻弹体质量侵蚀的影响分析 [J]. 爆炸与冲击, 2019, 39(7): 073102. DOI: 10.11883/bzycj-2018-0068.OUYANG H, CHEN X W. Analysis of mass abrasion of high-speed penetrator influencedby aggregate in concrete target [J]. Explosion and ShockWaves, 2019, 39(7): 073102. DOI: 10.11883/bzycj-2018-0068. [14] OUYANG H, CHEN X W. Modeling on mass loss and nose blunting of high-speed penetrator into concrete target [J]. International Journal of Protective Structures, 2019, 10(1): 3–25. DOI: 10.1177/2041419618784749. [15] 何丽灵, 陈小伟, 夏源明. 侵彻混凝土弹体磨蚀的若干研究进展 [J]. 兵工学报, 2010, 31(7): 950–966.HE L L, CHEN X W, XIA Y M. A review on the mass loss of projectile [J]. Acta Armamentarii, 2010, 31(7): 950–966. [16] LUK V K, FORRESTAL M J. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles [J]. International Journal of Impact Engineering, 1987, 6(4): 291–301. DOI: 10.1016/0734-743X(87)90096-0. [17] DAVIS R N, NEELY A M, JONES S E. Mass loss and blunting during high-speed penetration [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004, 218(9): 1053–1062. DOI: 10.1243/0954406041991189. [18] CHEN X W, HE L L, YANG S Q. Modeling on mass abrasion of kinetic energy penetrator [J]. European Journal of Mechanics-A: Solids, 2010, 29(1): 7–17. DOI: 10.1016/j.euromechsol.2009.07.006. [19] KLEPACZKO J R, HUGHES M L. Scaling of wear in kinetic energy penetrators [J]. International Journal of ImpactEngineering, 2005, 31(4): 435–459. DOI: 10.1016/j.ijimpeng.2004.02.006. [20] KLEPACZKO J R. Surface layer thermodynamics of steel penetrators at high and very high sliding velocities: A709014 [R]. Washington: Storming Media, 2001. [21] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4. 期刊类型引用(18)
1. 高飞,邓树新,张国凯,纪玉国,刘晨康,王明洋. 缩比模型弹侵彻岩石靶尺寸效应试验研究与理论分析. 兵工学报. 2023(12): 3601-3612 . 百度学术
2. 朱少平,王志亮,熊峰. 卵形弹丸对混凝土侵彻动力响应数值研究. 合肥工业大学学报(自然科学版). 2022(02): 243-250 . 百度学术
3. 邵伟,范锦彪,耿宇飞,王玮. 基于微元法的侵彻体弹头摩擦升温计算方法. 探测与控制学报. 2022(02): 34-40 . 百度学术
4. 章毅,胡枫,吴昊,王安宝. 高强混凝土介质侵彻系数计算方法. 防护工程. 2021(02): 31-38 . 百度学术
5. 张丁山,谷鸿平,徐笑,张博,吕永柱. 截卵形头部平台直径对初始侵彻弹道偏转的影响. 高压物理学报. 2021(05): 138-144 . 百度学术
6. 吴飚,任辉启,陈力,杨建超,黄家蓉,高伟亮,金栋梁. 弹体侵彻混凝土尺度效应试验研究与理论分析. 防护工程. 2020(02): 1-10 . 百度学术
7. 彭永,卢芳云,方秦,吴昊,李翔宇. 弹体侵彻混凝土靶体的尺寸效应分析. 爆炸与冲击. 2019(11): 58-68 . 本站查看
8. 张学伦,汪衡,谭正军,王昭明. 混凝土靶边界效应与弹丸长径比关联性的研究. 兵器装备工程学报. 2018(04): 11-13+18 . 百度学术
9. 刘宗伟,武海军,张学伦,刘俞平,熊国松,谭正军,曾令清. 高超弹体侵蚀机理及抗侵蚀设计研究. 兵器装备工程学报. 2017(04): 46-49 . 百度学术
10. 李艳,范文,赵均海,翟越. 中低速长杆弹侵彻半无限岩石靶的动态响应研究. 工程力学. 2017(09): 139-149 . 百度学术
11. 薛建锋,沈培辉,王晓鸣. 基于层裂机理的弹体侵彻混凝土的工程模型. 国防科技大学学报. 2017(03): 194-200 . 百度学术
12. 曹扬悦也,蒋志刚,谭清华,蒙朝美. 基于Hoek-Brown准则的混凝土-岩石类靶侵彻模型. 振动与冲击. 2017(05): 48-53+60 . 百度学术
13. 薛建锋,沈培辉,王晓鸣. 不同头部形状弹体侵彻混凝土的试验研究. 兵工自动化. 2016(02): 75-78 . 百度学术
14. 邓佳杰,张先锋,乔治军,郭磊,何勇,陈东东. 卵形弹体侵彻预开孔靶理论分析. 爆炸与冲击. 2016(05): 625-632 . 本站查看
15. 张学伦,刘宗伟. 弹丸CRH值对侵彻混凝土深度影响研究. 兵器装备工程学报. 2016(10): 31-34 . 百度学术
16. 薛建锋,沈培辉,王晓鸣. 钻地弹斜侵彻混凝土靶的工程计算模型. 航空学报. 2016(06): 1899-1911 . 百度学术
17. 张丁山,吕永柱,周涛,谷鸿平,张立建. 侵彻战斗部引信前后置过载的影响因素. 探测与控制学报. 2016(06): 41-45+50 . 百度学术
18. 彭永,方秦,吴昊,孔祥振,肖云凯. 不同头部形状弹体侵彻混凝土靶体的终点弹道参数分析. 兵工学报. 2014(S2): 128-134 . 百度学术
其他类型引用(11)
-