考虑活塞回复的侧向后喷武器两相流数值模拟

司鹏 邱明 廖振强 宋杰 马龙旭

司鹏, 邱明, 廖振强, 宋杰, 马龙旭. 考虑活塞回复的侧向后喷武器两相流数值模拟[J]. 爆炸与冲击, 2021, 41(8): 084201. doi: 10.11883/bzycj-2020-0252
引用本文: 司鹏, 邱明, 廖振强, 宋杰, 马龙旭. 考虑活塞回复的侧向后喷武器两相流数值模拟[J]. 爆炸与冲击, 2021, 41(8): 084201. doi: 10.11883/bzycj-2020-0252
SI Peng, QIU Ming, LIAO Zhenqiang, SONG Jie, MA Longxu. Numerical simulation of two-phase flow in a side spray gun considering piston reset motion[J]. Explosion And Shock Waves, 2021, 41(8): 084201. doi: 10.11883/bzycj-2020-0252
Citation: SI Peng, QIU Ming, LIAO Zhenqiang, SONG Jie, MA Longxu. Numerical simulation of two-phase flow in a side spray gun considering piston reset motion[J]. Explosion And Shock Waves, 2021, 41(8): 084201. doi: 10.11883/bzycj-2020-0252

考虑活塞回复的侧向后喷武器两相流数值模拟

doi: 10.11883/bzycj-2020-0252
基金项目: 国家自然科学基金(12072161,51676099,51376090);江苏省自然科学基金(BK20180473)
详细信息
    作者简介:

    司 鹏(1996- ),男,硕士研究生,njustqm@163.com

    通讯作者:

    邱 明(1976- ),男,副教授,硕士生导师,njstqm@163.com

  • 中图分类号: O354

Numerical simulation of two-phase flow in a side spray gun considering piston reset motion

  • 摘要: 为研究活塞回复运动对火药燃气流动的影响,基于两相流理论对活塞控制侧向后喷武器的发射过程进行了数值模拟研究。考虑控制侧向后喷通道开闭的活塞-弹簧系统的往复运动,建立了结合膛内气固两相流、活塞腔内流固耦合和侧向排气管内气体瞬态流动的武器发射过程数学模型,并将数值模拟结果与相关文献进行了比较验证。得到了该武器发射过程中膛内流场分布与稀疏波传播特性,并与普通武器的膛内流场进行了对比分析。进一步研究了活塞回复运动对火药燃气流动和减后坐效率的影响。结果表明:相对于不考虑活塞的回复运动,在弹丸初速都降低1.52%的情况下,因为活塞回复关闭后喷通道,其减后坐效率由38.86%下降到32.88%,说明在此类武器研究中,不可忽视活塞回复运动。
  • 图  1  活塞控制侧向后喷减后坐武器原理图

    Figure  1.  Structural diagrams of the piston-controlled side spray gun

    图  2  排气孔导通面积随弹丸位移变化

    Figure  2.  Change of barrel vent conducting area with projectile displacement

    图  3  求解方法流程图

    Figure  3.  Solution procedure

    图  4  膛底和弹底压力

    Figure  4.  Pressures at the breech and the projectile base

    图  5  弹丸速度

    Figure  5.  Projectile velocity

    图  6  弹丸运动与稀疏波波阵面传播

    Figure  6.  Projectile motion and rarefaction wave propagation

    图  7  普通火炮和活塞控制侧向后喷武器的膛内压力

    Figure  7.  Pressures of the traditional gun and the piston-controlled side spray gun

    图  8  普通火炮和活塞控制侧向后喷武器的弹丸速度

    Figure  8.  Projectile velocities of the traditional gun and the piston-controlled side spray gun

    图  9  膛压沿身管轴向的分布

    Figure  9.  Pressure distributions along the barrel axis

    图  10  气相速度沿身管轴向的分布

    Figure  10.  Gas-phase velocity distributions along the barrel axis

    图  11  固相速度沿身管轴向的分布

    Figure  11.  Solid-phase velocity distributions along the barrel axis

    图  12  活塞腔内和排气孔处的压力

    Figure  12.  Pressures in the piston cavity and at the barrel vent

    图  13  活塞位移

    Figure  13.  Piston location

    图  14  流入活塞腔内气体的总质量

    Figure  14.  Total mass of the propellant gasflowing into the piston cavity

    图  15  侧向后喷排气管内流场

    Figure  15.  Flow field along the axis of the sideways rear-spraying exhaust pipe

    图  16  活塞回复对武器发射过程后坐冲量的影响

    Figure  16.  Effect of piston reset motion on recoil momentum during the propulsion process

    表  1  数值分析结果

    Table  1.   Numerical results

    数据来源膛底压力/MPa弹底压力/MPa弹丸速度/(m·s−1弹丸出膛口时间/ms
    文献[7, 11, 13-14]355~400325~360660~70514.66~16.58
    本文36733667315.57
    下载: 导出CSV

    表  2  已知参数

    Table  2.   Known parameters

    A/mm2ρp/(kg·m−3kep/(kJ·kg−1R/(J·kg−1·K)K0αc/(J·m·kg−1·s−1·K−1
    706.51 6001.253 6003500.588 6619
    下载: 导出CSV

    表  3  计算参数

    Table  3.   Calculation parameters

    mh/kgSh/mm2kh/(N·mm−1Vho/mm3xb/mr1/mmAc/mm2
    0.3588314106280.4510314
    下载: 导出CSV
  • [1] OUYANG Q, ZHENG J J, LI Z C, et al. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation [J]. Smart Materials and Structures, 2016, 25(11): 115041. DOI: 10.1088/0964-1726/25/11/115041.
    [2] KATHE E L. Sonic rarefaction wave recoilless gun system: US 6460446 B1 [P]. 2002-10-08.
    [3] ZHANG X B, WANG Y Z. Analysis of dynamic characteristics for rarefaction wave gun during the launching [J]. Journal of Applied Mechanics, 2010, 77(5): 051601. DOI: 10.1115/1.4001289.
    [4] 张帆, 廖振强, 刘国鑫, 等. 基于两相流理论的膨胀波枪炮内弹道机理 [J]. 弹道学报, 2007, 19(4): 9–12. DOI: 10.3969/j.issn.1004-499X.2007.04.003.

    ZHANG F, LIAO Z Q, LIU G X, et al. Interior ballistic study on rarefaction wave gun based on theory of two-phase flow [J]. Journal of Ballistics, 2007, 19(4): 9–12. DOI: 10.3969/j.issn.1004-499X.2007.04.003.
    [5] 廖振强, 邱明. 自动武器气体动力学[M]. 北京: 国防工业出版社, 2015.
    [6] 陈杨, 廖振强, 刘国鑫, 等. 两种拉瓦尔喷管减后坐结构效能对比分析 [J]. 弹道学报, 2008, 20(4): 88–91.

    CHEN Y, LIAO Z Q, LIU G X, et al. Performance comparison of two recoilless structures with Laval nozzles [J]. Journal of Ballistics, 2008, 20(4): 88–91.
    [7] CHENG C, WANG C, ZHANG X B. A prediction method for the performance of a low-recoil gun with front nozzle [J]. Defence Technology, 2019, 15(5): 703–712. DOI: 10.1016/j.dt.2019.06.005.
    [8] 张帆, 廖振强, 刘国鑫, 等. 喷孔前置式膨胀波枪炮发射过程数值仿真与分析 [J]. 系统仿真学报, 2008, 20(18): 5032–5034, 5039.

    ZHANG F, LIAO Z Q, LIU G X, et al. Numerical simulation and analysis on front orifice rarefaction wave gun propulsion [J]. Journal of System Simulation, 2008, 20(18): 5032–5034, 5039.
    [9] 肖俊波, 杨国来, 李洪强, 等. 身管武器时延式喷管减后坐动力学建模仿真 [J]. 兵工学报, 2017, 38(10): 1909–1917. DOI: 10.3969/j.issn.1000-1093.2017.10.005.

    XIAO J B, YANG G L, LI H Q, et al. Dynamics modeling and simulation of recoil reduction of automatic weapon by time-delay nozzle device [J]. Acta Armamentarii, 2017, 38(10): 1909–1917. DOI: 10.3969/j.issn.1000-1093.2017.10.005.
    [10] 翁春生, 王浩. 计算内弹道学[M]. 北京: 国防工业出版社, 2006.
    [11] NUSSBAUM J, HELLUY P, HÉRARD J M, et al. Numerical simulations of gas-particle flows with combustion [J]. Flow, Turbulence and Combustion, 2006, 76(4): 403–417. DOI: 10.1007/s10494-006-9028-4.
    [12] RASHAD M M, ZHANG X B, EL SADEK H, et al. Two-phase flow interior ballistics model of naval large caliber guided projectile gun system [J]. Applied Mechanics and Materials, 2013, 465−466: 592–596. DOI: 10.4028/www.scientific.net/AMM.465-466.592.
    [13] JANG J S, OH S H, ROH T S. Development of three-dimensional numerical model for combustion-flow in interior ballistics [J]. Journal of Mechanical Science and Technology, 2016, 30(4): 1631–1637. DOI: 10.1007/s12206-016-0319-y.
    [14] MONREAL-GONZÁLEZ G, OTÓN-MARTÍNEZ R A, VELASCO F J S, et al. One-dimensional modelling of internal ballistics [J]. Journal of Energetic Materials, 2017, 35(4): 397–420. DOI: 10.1080/07370652.2016.1265613.
    [15] MENSHOV I S, NEMTSEV M Y, SEMENOV I V. Numerical modeling of wave processes accompanying combustion of inhomogeneously distributed composite propellant [J]. Computational Mathematics and Mathematical Physics, 2019, 59(9): 1528–1541. DOI: 10.1134/S0965542519090148.
    [16] HU C B, ZHANG X B. A Riemann problem based coupling method for predicting the combustion of propellant in a gun launching process [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(6): 751–758. DOI: 10.1002/prep.201800293.
    [17] CHENG C, ZHANG X B. Numerical investigation of two-phase reactive flow with two moving boundaries in a two-stage combustion system [J]. Applied Thermal Engineering, 2019, 156: 422–431. DOI: 10.1016/j.applthermaleng.2019.04.061.
    [18] CAO R D, ZHANG X B. Design optimization for a launching system with novel structure [J]. Defence Technology, 2019, 15(5): 680–689. DOI: 10.1016/j.dt.2019.08.005.
    [19] 张帆. 膨胀波火炮发射原理及其在常规结构枪炮中的应用[D]. 南京: 南京理工大学, 2008: 103−106.
    [20] 陈杨. 喷管气流反推减后坐武器系统关键技术研究[D]. 南京: 南京理工大学, 2010: 10−11.
    [21] 王颖泽. 基于膨胀波发射技术的火炮内弹道与发射动力学分析[D]. 南京: 南京理工大学, 2009: 57−58.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  503
  • HTML全文浏览量:  274
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 修回日期:  2021-03-01
  • 网络出版日期:  2021-07-15
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回