高共面/异面抗冲击承载能力的新型蜂窝设计及吸能评估

廖就 李志刚 梁方正 王佳铭 刘婉婷 李萌 冯建文

廖就, 李志刚, 梁方正, 王佳铭, 刘婉婷, 李萌, 冯建文. 高共面/异面抗冲击承载能力的新型蜂窝设计及吸能评估[J]. 爆炸与冲击, 2021, 41(8): 083103. doi: 10.11883/bzycj-2020-0262
引用本文: 廖就, 李志刚, 梁方正, 王佳铭, 刘婉婷, 李萌, 冯建文. 高共面/异面抗冲击承载能力的新型蜂窝设计及吸能评估[J]. 爆炸与冲击, 2021, 41(8): 083103. doi: 10.11883/bzycj-2020-0262
LIAO Jiu, LI Zhigang, LIANG Fangzheng, WANG Jiaming, LIU Wanting, LI Meng, FENG Jianwen. Design and evaluation of new honeycomb configurations with high in-plane /out-of-plane loading-carrying capacity under impact[J]. Explosion And Shock Waves, 2021, 41(8): 083103. doi: 10.11883/bzycj-2020-0262
Citation: LIAO Jiu, LI Zhigang, LIANG Fangzheng, WANG Jiaming, LIU Wanting, LI Meng, FENG Jianwen. Design and evaluation of new honeycomb configurations with high in-plane /out-of-plane loading-carrying capacity under impact[J]. Explosion And Shock Waves, 2021, 41(8): 083103. doi: 10.11883/bzycj-2020-0262

高共面/异面抗冲击承载能力的新型蜂窝设计及吸能评估

doi: 10.11883/bzycj-2020-0262
基金项目: 装备预研教育部联合基金(青年人才)(6141A02033121);中央高校基本科研业务费资助项目(2019JBM048);载人航天预研项目(040202)
详细信息
    作者简介:

    廖 就(1997- ),男,硕士,19126051@bjtu.edu.cn

    通讯作者:

    李志刚(1983- ),男,博士,副教授,zgli@bjtu.edu.cn

  • 中图分类号: O347

Design and evaluation of new honeycomb configurations with high in-plane /out-of-plane loading-carrying capacity under impact

  • 摘要: 针对传统蜂窝共面和异面承载能力差距太大的问题,提出了胞壁弓字形弯折蜂窝、层间组合蜂窝和折叠蜂窝等3种新型蜂窝,建立了新型蜂窝的有限元模型并分析了其变形模式和承载能力。结果表明,在相对密度一致的前提下,与传统正六边形蜂窝相比,这3种新构型蜂窝均缩小了共面和异面方向承载能力的差距。其中胞壁弓字形弯折蜂窝的共面/异面承载比提高了21.3倍;层间组合蜂窝两个共面方向承载能力悬殊,承载能力更强的共面方向与异面的承载比值提高了42倍;折叠蜂窝则提高了21.3倍。研究结果可以为抗多向冲击载荷作用下的蜂窝结构设计提供新思路和参考。
  • 图  1  胞壁弓字形弯折蜂窝设计思路

    Figure  1.  Design of the bow-shaped honeycomb

    图  2  层间组合蜂窝设计思路

    Figure  2.  Design of the staggered honeycomb

    图  3  折叠蜂窝设计思路

    Figure  3.  Design of the folded honeycomb

    图  4  蜂窝压缩试验

    Figure  4.  Compression tests on honeycombs

    图  5  仿真结果试验验证

    Figure  5.  Comparison of the compressive stress-strain curves between test and simulation

    图  6  在10 m/s速度下试验和仿真的对比

    Figure  6.  Comparison of the platform stress and deformation model between test and simulation at 10 m/s

    图  7  胞壁弓字形折叠蜂窝仿真模型

    Figure  7.  The finite element model of the bow-shaped honeycomb

    图  8  胞壁弓字形弯折蜂窝异面变形过程

    Figure  8.  The deformation mode of the bow-shaped honeycomb under crush in out-of-plane direction

    图  9  胞壁弓字形弯折蜂窝应力应变曲线

    Figure  9.  The stress-strain curves of the bow-shaped honeycomb in in-plane and out-of-plane directions

    图  10  胞壁弓字形弯折蜂窝共面变形过程

    Figure  10.  The deformation mode of the bow-shaped honeycomb under crush in in-plane direction

    图  11  层间组合蜂窝仿真模型

    Figure  11.  The finite element model of the staggered honeycomb

    图  12  层间组合蜂窝异面和共面x方向变形模式

    Figure  12.  The deformation mode of the staggered honeycomb in in-plane direction (x axis direction) and out-of-plane direction

    图  13  层间组合蜂窝应力应变曲线

    Figure  13.  The stress-strain curves of the staggered honeycomb in in-plane and out-of-plane directions

    图  14  层间组合蜂窝共面y方向变形模式

    Figure  14.  The deformation mode of the staggered honeycomb in in-plane (y-axis) direction

    图  15  折叠蜂窝有限元模型

    Figure  15.  The finite element model of the folded honeycomb

    图  16  折叠蜂窝异面压缩变形模式

    Figure  16.  The deformation mode of the folded honeycomb under crush in out-of-plane direction

    图  17  折叠蜂窝共面x压缩变形模式

    Figure  17.  The deformation mode of the folded honeycomb under crush in in-plane (x-axis) direction

    图  18  折叠蜂窝应力应变曲线

    Figure  18.  The stress-strain curves of the folded honeycomb in in-plane and out-of-plane directions

    图  19  折叠蜂窝共面y压缩变形模式

    Figure  19.  The deformation mode of the folded honeycomb under crush in-plane (y-axis) direction

    图  20  铝蜂窝压缩特性曲线

    Figure  20.  The compression curve of an aluminum honeycomb

    图  21  平台应力比较

    Figure  21.  Comparison of the platform stressamong different honeycombs

    图  22  共面与异面质量比吸能对比

    Figure  22.  Comparison of the mass-specific energy absorption of different honeycombs in out-of-plane and in-plane directions

    表  1  不同构型蜂窝的尺寸

    Table  1.   The sizes of different honeycombs

    蜂窝类型h/mml/mmt/mma/mmx/mmα/(°)γ/(°)相对密度质量/g体积/mm3
    胞壁弓字形弯折蜂窝303.430.031050.022.60750 434
    层间组合蜂窝305.2 0.030.021.11219 670
    折叠蜂窝篇301.730.0375750.020.74513 733
    下载: 导出CSV

    表  2  不同构型蜂窝结构的平台应力

    Table  2.   Platform stresses for different honeycombs

    蜂窝类型平台应力/MPaKxKy
    异面共面x共面y
    六边形蜂窝1.1200.0200.02050.0180.018
    弓字形弯折蜂窝0.7600.2900.3000.3810.395
    层间组合蜂窝0.4190.3220.0290.7680.069
    折叠蜂窝0.3660.2000.0870.5400.240
    下载: 导出CSV

    表  3  不同构型蜂窝结构的质量比吸能

    Table  3.   Specific mass energy absorptionfor different honeycombs

    蜂窝类型质量比吸能/(J·g−1RxRy
    异面共面x共面y
    六边形蜂窝15.5460.2730.3240.0180.021
    弓字形弯折蜂窝12.0003.9203.9510.3270.329
    层间组合蜂窝5.3374.0710.5440.7630.102
    折叠蜂窝5.3912.8001.3710.5200.254
    下载: 导出CSV
  • [1] KHAN M K, BAIG T, MIRZA S. Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb [J]. Materials Science and Engineering: A, 2012, 539: 135–142. DOI: 10.1016/j.msea.2012.01.070.
    [2] 荣吉利, 朱宇博, 宋乾强, 等. 异面压缩下六边形铝蜂窝平均塑性坍塌应力研究 [J]. 宇航学报, 2018, 39(3): 257–263. DOI: 10.3873/j.issn.1000-1328.2018.03.003.

    RONG J L, ZHU Y B, SONG Q Q, et al. Research on the mean plastic crushing stress of hexagonal aluminum honeycombs under out-of-plane compression [J]. Journal of Astronautics, 2018, 39(3): 257–263. DOI: 10.3873/j.issn.1000-1328.2018.03.003.
    [3] 罗昌杰, 周安亮, 刘荣强, 等. 金属蜂窝异面压缩下平均压缩应力的理论模型 [J]. 机械工程学报, 2010, 46(18): 52–59. DOI: 10.3901/JME.2010.18.052.

    LUO C J, ZHOU A L, LIU R Q, et al. Average compressive stress constitutive equation of honeycomb metal under out-of-plane compression [J]. Journal of Mechanical Engineering, 2010, 46(18): 52–59. DOI: 10.3901/JME.2010.18.052.
    [4] 赵国伟, 白俊青, 祁玉峰, 等. 异面冲击下金属蜂窝结构平均塑性坍塌应力模型 [J]. 振动与冲击, 2016, 35(12): 50–54. DOI: 10.13465/j.cnki.jvs.2016.12.008.

    ZHAO G W, BAI J Q, QI Y F, et al. Average plastic collapse stress model of metallic honeycomb structure under out-of-plan impact load [J]. Journal of Vibration and Shock, 2016, 35(12): 50–54. DOI: 10.13465/j.cnki.jvs.2016.12.008.
    [5] 何彬, 李响. 一种新型组合蜂窝的抗冲击性能研究 [J]. 机械设计与制造, 2015(6): 49–51, 54. DOI: 10.19356/j.cnki.1001-3997.2015.06.013.

    HE B, LI X. Research on the impact resistance of a new type of honeycomb structure [J]. Machinery Design and Manufacture, 2015(6): 49–51, 54. DOI: 10.19356/j.cnki.1001-3997.2015.06.013.
    [6] 杜义贤, 李涵钊, 谢黄海, 等. 具有创新拓扑构型的周期性点阵结构抗剪切性能分析 [J]. 机械设计与研究, 2016, 32(5): 83–87. DOI: 10.13952/j.cnki.jofmdr.2016.0192.

    DU Y X, LI H Z, XIE H H, et al. Shear resistance of periodic lattice structure with innovative topology configuration [J]. Machine Design and Research, 2016, 32(5): 83–87. DOI: 10.13952/j.cnki.jofmdr.2016.0192.
    [7] YANG X F, SUN Y X, YANG J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure [J]. Thin-Walled Structures, 2018, 125: 1–11. DOI: 10.1016/j.tws.2018.01.014.
    [8] 王中钢, 姚松. 加筋正六角铝蜂窝异面力学特性与筋胞厚度匹配优化 [J]. 航空材料学报, 2013, 33(3): 86–91. DOI: 10.3969/j.issn.1005-5053.2013.3.016.

    WANG Z G, YAO S. Out-of-plane mechanical properties and thickness matching optimization between rib and cell thin-wall of reinforced regular hexagon aluminum honeycomb [J]. Journal of Aeronautical Materials, 2013, 33(3): 86–91. DOI: 10.3969/j.issn.1005-5053.2013.3.016.
    [9] WANG Z G, SHI C, DING S S, et al. Crashworthiness of innovative hexagonal honeycomb-like structures subjected to out-of-plane compression [J]. Journal of Central South University, 2020, 27(2): 621–628. DOI: 10.1007/s11771-020-4321-2.
    [10] 胡玲玲, 蒋玲. 胞孔构型对金属蜂窝动态力学性能的影响机理 [J]. 爆炸与冲击, 2014, 34(1): 41–46. DOI: 10.11883/1001-1455(2014)01-0041-06.

    HU L L, JIANG L. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs [J]. Explosion and Shock Waves, 2014, 34(1): 41–46. DOI: 10.11883/1001-1455(2014)01-0041-06.
    [11] 胡玲玲, 陈依骊. 三角形蜂窝在面内冲击荷载下的力学性能 [J]. 振动与冲击, 2011, 30(5): 226–229, 235. DOI: 10.3969/j.issn.1000-3835.2011.05.047.

    HU L L, CHEN Y L. Mechanical properties of triangular honeycombs under in-plane impact loading [J]. Journal of Vibration and Shock, 2011, 30(5): 226–229, 235. DOI: 10.3969/j.issn.1000-3835.2011.05.047.
    [12] LIU Y, ZHANG X C. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs [J]. International Journal of Impact Engineering, 2009, 36(1): 98–109. DOI: 10.1016/j.ijimpeng.2008.03.001.
    [13] 何强, 马大为, 张震东. 分层屈服强度梯度蜂窝材料的动力学性能研究 [J]. 工程力学, 2015, 32(4): 191–196. DOI: 10.6052/j.issn.1000-4750.2013.10.0986.

    HE Q, MA D W, ZHANG Z D. Research on dynamic crushing of layered yielding stress-gradient circular honeycombs [J]. Engineering Mechanics, 2015, 32(4): 191–196. DOI: 10.6052/j.issn.1000-4750.2013.10.0986.
    [14] HEDAYATI R, SADIGHI M, MOHAMMADI-AGHDAM M, et al. Mechanical properties of additively manufactured octagonal honeycombs [J]. Materials Science and Engineering: C, 2016, 69: 1307–1317. DOI: 10.1016/j.msec.2016.08.020.
    [15] THOMAS T, TIWARI G. Energy absorption and in-plane crushing behavior of aluminium reinforced honeycomb [J]. Vacuum, 2019, 166: 364–369. DOI: 10.1016/j.vacuum.2018.10.057.
    [16] 卢子兴, 李康. 负泊松比蜂窝动态压溃行为的有限元模拟 [J]. 机械强度, 2016, 38(6): 1237–1242. DOI: 10.16579/j.issn.1001.9669.2016.06.018.

    LU Z X, LI K. Dynamic crushing of honeycombs with a negative Poisson’s ratio-a finite element study [J]. Journal of Mechanical Strength, 2016, 38(6): 1237–1242. DOI: 10.16579/j.issn.1001.9669.2016.06.018.
    [17] HU L L, ZHOU M Z, DENG H. Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation [J]. Composite Structures, 2019, 207: 323–330. DOI: 10.1016/j.compstruct.2018.09.066.
    [18] 马瑞君, 王玉涛, 李萌, 等. 基于Miura折纸的蜂窝材料共面缓冲性能研究 [J]. 载人航天, 2020, 26(1): 48–55. DOI: 10.16329/j.cnki.zrht.2020.01.007.

    MA R J, WANG Y T, LI M, et al. Research on in-plane buffer performance of honeycomb material based on Miura pattern [J]. Manned Spaceflight, 2020, 26(1): 48–55. DOI: 10.16329/j.cnki.zrht.2020.01.007.
    [19] ZHAI J Y, LIU Y F, GENG X Y, et al. Energy absorption of pre-folded honeycomb under in-plane dynamic loading [J]. Thin-Walled Structures, 2019, 145: 106356. DOI: 10.1016/j.tws.2019.106356.
    [20] 谭思博, 侯兵, 李玉龙, 等. 基体材料对铝蜂窝动态强化特性的影响 [J]. 爆炸与冲击, 2015, 35(1): 16–21. DOI: 10.11883/1001-1455(2015)01-0016-06.

    TAN S B, HOU B, LI Y L, et al. Effect of base materials on the dynamic enhancement of aluminium honeycombs [J]. Explosion and Shock Waves, 2015, 35(1): 16–21. DOI: 10.11883/1001-1455(2015)01-0016-06.
    [21] 李萌, 刘荣强, 郭宏伟, 等. 腿式着陆器用不同拓扑结构金属蜂窝吸能特性优化设计 [J]. 振动与冲击, 2013, 32(21): 7–14. DOI: 10.3969/j.issn.1000-3835.2013.21.002.

    LI M, LIU R Q, GUO H W, et al. Crashworthiness optimization of different topological structures of metal honeycomb used in a legged-typed lander [J]. Journal of Vibration and Shock, 2013, 32(21): 7–14. DOI: 10.3969/j.issn.1000-3835.2013.21.002.
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  570
  • HTML全文浏览量:  347
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 修回日期:  2020-11-30
  • 网络出版日期:  2021-07-20
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回