Experimental investigation into performances of an active Whipple shield against hypervelocity impact
-
摘要: 以二级轻气炮作为加载手段,针对以PTFE/Al活性材料为防护屏的Whipple防护结构,开展不同弹丸尺寸、不同碰撞速度的超高速撞击实验。利用激光阴影照相设备,获得并分析了碎片云特性;通过回收的防护结构靶板,研究了活性材料防护结构超高速撞击条件下的后板损伤特性;通过与经典Christiansen撞击极限方程对比,获得活性材料Whipple结构防护性能,并拟合得到新型防护结构的撞击极限曲线。结果表明,相较于同面密度铝合金材料,活性材料超高速撞击条件下的冲击起爆反应使得碎片云中具有侵彻能力的碎片大幅减少,从而显著提升航天器的防护能力,撞击速度为2.31 km/s时最大可提升45%。
-
关键词:
- Whipple防护结构 /
- 超高速撞击 /
- 活性材料 /
- 损伤特性 /
- 撞击极限
Abstract: With the continuous increase of centimeter-scale space debris, the exploration and design of new high-performance shields has become an urgent need. Based on the shield of active materials, the hypervelocity impact experiments with different projectile sizes and impact velocities were carried out by using a two-stage light gas gun. The image characteristics of debris clouds under different impact conditions were obtained and analyzed by laser shadowgraph photography. The damage characteristics of the rear wall of the active Whipple shield were studied. Through the statistical analysis of the number of craters, the influences of active materials on the fragmentation of projectiles under different impact velocities were obtained. Compared with the classical Christiansen ballistic limit equation, the protective performance of energetic active material shield was obtained, and the ballistic limit curve of the new shield was fitted. Analysis suggests that shock initiation characteristics of active materials under impact enhanced the shield performance. When impacted by the space debris, active material shield firstly uses its mechanical strength for primary crushing. During this process, the energetic material shield has an explosive reaction with an instantaneous temperature being as high as 3 800 K, which can promote fragmentation, melting and reduce the size of the space debris. At the same time, the explosion products with high temperature, pressure and high speed motion produce a negative acceleration to the projectile fragments, reducing the axial kinetic energy. The explosion products of the active materials are mostly gaseous, which greatly reduce the number of the fragments with penetration ability in the debris cloud. The penetration failure of the rear plate only comes from the fragments generated by the fragmentation of the projectile. Under the combined action of impact and explosion, the active materials shield can not only fully break and decelerate space debris, but also greatly reduce the number of solid debris in debris cloud, thereby produce a sharp rise in the spacecraft protection ability, and the maximum protection ability can be increased by 45% when the velocity is 2.31 km/s.-
Key words:
- Whipple shield /
- hypervelocity impact /
- active materials /
- damage characteristics /
- ballistic limit
-
表 1 主要原料参数
Table 1. Parameters of raw materials
原料 规格 生产厂家 聚四氟乙烯 粒径26 μm 美国Dupont公司 铝粉 粒径10 μm,纯度99.9% 河南远洋铝业 高纯氩气 纯度≥99.99% 北京亚男伟业 无水乙醇 纯度≥99.7% 北京化工厂 表 2 实验参数及损伤情况
Table 2. Hypervelocity impact test configurations and damage results
实验 弹丸参数 Whipple防护结构参数 后板损伤 直径/mm 质量/g 速度/(km·s−1) 前板材料 面密度/(g·cm−2) 后板材料 1 6.4 0.38 5.06 LY-12铝 0.84 LY-12铝 穿孔撕裂 2 6.4 0.38 5.03 PTFE/Al 0.84 LY-12铝 轻微层裂 3 5.0 0.18 3.79 PTFE/Al 0.84 LY-12铝 鼓包 4 5.0 0.18 3.88 PTFE/Al 0.84 LY-12铝 鼓包 5 5.0 0.18 4.00 PTFE/Al 0.84 LY-12铝 鼓包 6 6.0 0.31 3.71 PTFE/Al 0.84 LY-12铝 穿孔 7 6.4 0.38 6.08 PTFE/Al 0.84 LY-12铝 轻微鼓包 8 5.0 0.18 2.65 PTFE/Al 0.84 LY-12铝 鼓包 9 6.0 0.31 2.31 PTFE/Al 0.84 LY-12铝 鼓包 表 3 后板损伤情况统计
Table 3. Damage statistics of rear wall
实验
编号撞击速度/
(km·s−1)弹坑数目 弹坑总数
(dc≥2 mm)(dc>4 mm) (3 mm≤dc≤4 mm) (2 mm≤dc<3 mm) 2 5.03 6 5 12 23 3 3.79 2 2 0 4 4 3.88 5 0 3 8 5 4.00 3 3 1 7 7 6.08 0 6 9 15 8 2.65 1 0 0 1 9 2.31 1 0 0 1 -
[1] 龚自正, 赵秋艳, 李明, 等. 空间碎片防护研究前沿问题与展望 [J]. 空间碎片研究, 2019, 19(3): 2–13.GONG Z Z, ZHAO Q Y, LI M, et al. The frontier problem and prospect of space debris protection research [J]. Space Debris Research, 2019, 19(3): 2–13. [2] COUR-PALAIS B G, CREW J L. A multi-shock concept for spacecraft shielding [J]. International Journal of Impact Engineering, 1990, 10: 135–146. DOI: 10.1016/0734-743X(90)90054-Y. [3] CHRISTIANSEN E L, KERR J H. Mesh double-bumper shield: a low-weight alternative for spacecraft meteoroid and orbital debris protection [J]. International Journal of Impact Engineering, 1993, 14: 169–180. DOI: 10.1016/0734-743X(93)90018-3. [4] CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1−3): 217–228. DOI: 10.1016/0734-743X(95)99848-L. [5] CHRISTIANSEN E L, KERR J H, DE LA FUENTE H M, et al. Flexible and deployable meteoroid/debris shielding for spacecraft [J]. International Journal of Impact Engineering, 1999, 23(11): 125–136. DOI: 10.1016/S0734-743X(99)00068-8. [6] 贾古寨, 哈跃, 庞宝君, 等. 玄武岩/Kevlar纤维布填充防护结构撞击极限及损伤特性 [J]. 爆炸与冲击, 2016, 36(4): 433–440. DOI: 10.11883/1001-1455(2016)04-0433-08.JIA G Z, HA Y, PANG B J, et al. Ballistic limit and damage properties of basalt/Kevlar stuffed shield [J]. Explosion and Shock Waves, 2016, 36(4): 433–440. DOI: 10.11883/1001-1455(2016)04-0433-08. [7] 王应德, 冯春祥, 宋永才, 等. 碳化硅纤维连续化工艺研究 [J]. 宇航材料工艺, 1997(2): 21–25.WANG Y D, FENG C X, SONG Y C, et al. Study on process of continuous sic fibers [J]. Aerospace Materials & Technology, 1997(2): 21–25. [8] 侯明强, 龚自正, 徐坤博, 等. Al/Mg阻抗梯度材料超高速撞击机理数值仿真研究 [J]. 航天器环境工程, 2013, 30(6): 581–585. DOI: 10.3969/j.issn.1673-1379.2013.06.003.HOU M Q, GONG Z Z, XU K B, et al. Numerical study on hypervelocity impact mechanism of Al/Mg wave impedance-grade material [J]. Spacecraft Environment Engineering, 2013, 30(6): 581–585. DOI: 10.3969/j.issn.1673-1379.2013.06.003. [9] ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281. [10] WANG H, ZHENG Y, YU Q, et al. Impact-induced initiation and energy release behavior of reactive materials [J]. Journal of Applied Physics, 2011, 110(7): 074904. DOI: 10.1063/1.3644974. [11] 门建兵, 蒋建伟, 帅俊锋, 等. 复合反应破片爆炸成型与毁伤实验研究 [J]. 北京理工大学学报, 2010, 30(10): 1143–1146. DOI: 10.15918/j.tbit1001-0645.2010.10.007.MEN J B, JIANG J W, SHUAI J F, et al. Experimental research on formation and terminal effect of explosively formed compound reactive fragments [J]. Transactions of Beijing Institute of Technology, 2010, 30(10): 1143–1146. DOI: 10.15918/j.tbit1001-0645.2010.10.007. [12] 肖艳文, 徐峰悦, 余庆波. 类钢密度活性材料弹丸撞击铝靶行为实验研究 [J]. 兵工学报, 2016, 37(6): 1016–1022. DOI: 10.3969/j.issn.1000-1093.2016.06.007.XIAO Y W, XU F Y, YU Q B. Experimental research on behavior of active material projectile with steel-like density impacting aluminum target [J]. Acta Armamentarii, 2016, 37(6): 1016–1022. DOI: 10.3969/j.issn.1000-1093.2016.06.007. [13] 徐松林, 阳世清, 张炜, 等. PTFE/A1含能复合物的本构关系 [J]. 爆炸与冲击, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06.XU S L, YANG S Q, ZHANG W, et al. A constitutive relation for a pressed PTFE/A1 energetic composite material [J]. Explosion and Shock Waves, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06. [14] 武强, 张庆明, 龙仁荣, 等. 活性材料防护屏在球形弹丸超高速撞击下的穿孔特性研究 [J]. 兵工学报, 2017, 38(11): 2126–2133. DOI: 10.3969/j.issn.1000-1093.2017.11.007.WU Q, ZHANG Q M, LONG R R, et al. Perforation characteristics of energetic material shield induced by hypervelocity impact of spherical projectile [J]. Acta Armamentarii, 2017, 38(11): 2126–2133. DOI: 10.3969/j.issn.1000-1093.2017.11.007. [15] 柳森, 谢爱民, 黄洁, 等. 超高速碰撞碎片云的四序列激光阴影照相 [J]. 实验流体力学, 2010, 24(1): 1–5. DOI: 10.3969/j.issn.1672-9897.2010.01.001.LIU S, XIE A M, HUANG J, et al. Four sequences laser shadowgraph for the visualization of hypervelocity impact debris cloud [J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 1–5. DOI: 10.3969/j.issn.1672-9897.2010.01.001. [16] 张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000: 110−122. [17] CHRISTIANSEN E L. Design and performance equations for advanced meteoroid and debris shield [J]. International Journal of Impact Engineering, 1993, 14(6−10): 145–156. DOI: 10.1016/0734-743X(93)90016-Z.