弹性楔形体入水砰击载荷及结构响应的理论计算与数值模拟研究

王一雯 郑成 吴卫国

王一雯, 郑成, 吴卫国. 弹性楔形体入水砰击载荷及结构响应的理论计算与数值模拟研究[J]. 爆炸与冲击, 2021, 41(11): 113303. doi: 10.11883/bzycj-2020-0276
引用本文: 王一雯, 郑成, 吴卫国. 弹性楔形体入水砰击载荷及结构响应的理论计算与数值模拟研究[J]. 爆炸与冲击, 2021, 41(11): 113303. doi: 10.11883/bzycj-2020-0276
WANG Yiwen, ZHENG Cheng, WU Weiguo. On slamming load and structural response of a flexible wedge via analytical methods and numerical simulations[J]. Explosion And Shock Waves, 2021, 41(11): 113303. doi: 10.11883/bzycj-2020-0276
Citation: WANG Yiwen, ZHENG Cheng, WU Weiguo. On slamming load and structural response of a flexible wedge via analytical methods and numerical simulations[J]. Explosion And Shock Waves, 2021, 41(11): 113303. doi: 10.11883/bzycj-2020-0276

弹性楔形体入水砰击载荷及结构响应的理论计算与数值模拟研究

doi: 10.11883/bzycj-2020-0276
基金项目: 高技术船舶科研项目(2014[493]);基础加强计划重点基础研究(2020-JCJQ-ZD-225-11)
详细信息
    作者简介:

    王一雯(1990- ),女,博士,讲师, yiwenwang90@whut.edu.cn

    通讯作者:

    郑 成(1991- ),男,博士,讲师,zhengchengyeep@whut.edu.cn

  • 中图分类号: O352

On slamming load and structural response of a flexible wedge via analytical methods and numerical simulations

  • 摘要: 针对弹性楔形体砰击载荷及结构响应问题,采用理论解析计算方法以及任意拉格朗日-欧拉(arbitrary Lagrangian-Eulerian, ALE)流固耦合数值计算方法开展研究。分别分析不同边界条件、入水速度、板厚以及斜升角对弹性结构所受砰击力及结构响应的影响及变化规律,并探讨砰击载荷时间历程和物面分布特性。结果表明,通过增大斜升角可有效降低弹性楔形体砰击载荷和结构响应,斜升角自10°增大至30°,无量纲砰击力峰值减小至6.9%,结构变形极值减小至6.5%。可通过水弹性因数${ {R_{\text{F}}} = {C_{\text{B}}}\tan \beta \sqrt {EI/(\rho {L^3})} /v }$评估板厚、入水速度、斜升角以及边界条件对砰击载荷作用下结构水弹性效应的影响,在水弹性因数RF>1.71时,可采用理论解析方法高效高精度预报砰击载荷作用下弹性楔形体结构变形响应。
  • 图  1  弹性楔形体砰击载荷及结构响应示意图

    Figure  1.  Schematics of slamming load and structural response of a flexible wedge

    图  2  采用不同模型得到的板厚为8mm、以 1 m/s的速度垂直入水的弹性楔形体$ x' = 0.5L $处结构变形的时间历程

    Figure  2.  Time series of the structural response at $ x' = 0.5L $ of the flexible wedges with different deadrise angles and the plate thickness of 8 mm at the vertical water-entry velocity of 1 m/s calculated by different models

    图  3  t=20, 40 ms时沿弹性楔形体物面的结构变形分布($ \ \beta $=10°, b=8 mm)

    Figure  3.  Response distribution along the wedge structure at t=20, 40 ms ($ \ \beta $=10°, b=8 mm)

    图  4  砰击入水计算模型

    Figure  4.  The water-entry impact computation model with mesh generation

    图  5  不同网格尺寸的楔形体模型所受结构砰击力

    Figure  5.  Comparison of slamming forces of wedge models with different mesh sizes

    图  6  刚性和弹性楔形体所受到的无量纲砰击力 (β=10°)

    Figure  6.  Dimensionless slamming forces on rigid and elastic wedges with β=10°

    图  7  刚性和弹性楔形体所受到的无量纲砰击力 (β=30°)

    Figure  7.  Dimensionless slamming forces on rigid and elastic wedges with β=30°

    图  8  10°斜升角弹性楔形体入水过程中自由液面变化及流场压力分布(v=8 m/s)

    Figure  8.  Fluid evolution and pressure distribution during the process of the elastic wedge with β=10° entering the water (v=8 m/s)

    图  9  30°斜升角弹性楔形体入水过程中自由液面变化及流场压力分布(v=8 m/s)

    Figure  9.  Fluid evolution and pressure distribution during the process of the elastic wedge with β=30° entering the water (v=8 m/s)

    图  10  刚性和弹性楔形体点1~4处的无量纲砰击压力-时间历程(β=10°,v=6 m/s)

    Figure  10.  Dimensionless slamming pressure-time history curves at points 1−4 of the rigid and elastic wedges (β=10°, v=6 m/s)

    图  11  刚性和弹性楔形体点1~4处的无量纲砰击压力时间历程($ \beta $=30°,v=6 m/s)

    Figure  11.  Dimensionless slamming pressure-time history curves at points 1−4 of the rigid and elastic wedges ($ \beta $=30°, v=6 m/s)

    图  12  不同板厚的楔形体x′ =0.5L处的结构变形 (β=30°)

    Figure  12.  Structural responses at x′=0.5L of the wedges with different thicknesses (β=30°)

    图  13  不同板厚的楔形体x′=0.5L处的结构变形(β=10°)

    Figure  13.  Structural responses at x′=0.5L of the wedges with different plate thickness (β=10°)

    图  14  不同板厚的楔形体x′=0.5L处的结构变形(β=45°)

    Figure  14.  Structural responses at x′=0.5L of the wedges with different plate thicknesses (β=45°)

    图  15  两端固支的不同板厚的弹性楔形体x′=0.5L处的结构变形(β=30°)

    Figure  15.  Structural responses at x′=0.5L of the clamped wedges with different plate thicknesses (β=30°)

    图  16  不同入水速度下两端简支楔形体的结构变形极值 (β=30°)

    Figure  16.  The maximum responses of the supported wedges at different impact velocities (β=30°)

    图  17  不同入水速度下两端固支楔形体的结构变形极值(β=30°)

    Figure  17.  The maximum responses of the clamped wedges at different impact velocities (β=30°)

    表  1  空气域及水域状态方程参数

    Table  1.   Parameters for equations of state of air and water

    材料ρ0/(kg·m−3c/(m·s−1C4C5S1S2
    空气1.2 3400.40.4
    1 0001 4801.92−0.096
    下载: 导出CSV

    表  2  不同网格尺寸模型信息

    Table  2.   Three models with different mesh sizes

    网格尺寸/mm结构单元数量流体单元数量计算时长/min
    4100 24 000 57
    2200 55 800 440
    1400223 5005 142
    下载: 导出CSV

    表  3  两端简支的不同板厚的弹性楔形体$x' = 0.5L $处的结构变形峰值

    Table  3.   The maximum structural responses at $x' = 0.5L $ of the supported wedges with different plate thickesses

    b/mmwmax/mm
    理论解析解ALEBEM[5]
    β=10°β=30°β=45°β=10°β=30°β=45°β=30°β=45°
    56.9700.4200.2004.3200.4100.2100.3800.150
    81.7100.1000.0491.5300.1000.0510.0950.035
    110.6600.0390.0190.5900.4000.0200.0360.015
    下载: 导出CSV

    表  4  $\ \beta=30^\circ $的不同板厚的弹性楔形体$x'=0.5L$处的结构变形峰值

    Table  4.   The maximum structural responses at $x'=0.5L$ of the wedges with $\ \beta=30^\circ $ and different plate thicknesses

    b/mmwmax/μm
    理论解析ALE
    两端简支两端固支两端简支两端固支
    542084.041096.0
    810021.010024.0
    11 397.94009.1
    下载: 导出CSV

    表  5  不同板厚的楔形体在不同入水速度下的水弹性因数

    Table  5.   The hydroelastic factors of the wedges with different plate thicknesses at different water-enter velocities

    速度/(m·s-1)RF
    b=5 mmb=8 mmb=11 mm
    13.386.8311.01
    21.693.425.51
    40.841.712.75
    60.561.141.84
    80.420.851.38
    下载: 导出CSV
  • [1] KVALSVOLD J, FALTINSEN O M. Hydroelastic modeling of wet deck slamming on multihull vessels [J]. Journal of Ship Research, 1995, 39(3): 225–239. DOI: 10.5957/jsr.1995.39.3.225.
    [2] FALTINSEN O M, KVÅLSVOLD J, AARSNES J V. Wave impact on a horizontal elastic plate [J]. Journal of Marine Science and Technology, 1997, 2(2): 87–100. DOI: 10.1007/BF02491523.
    [3] KHABAKHPASHEVA T I, KOROBKIN A A. Elastic wedge impact onto a liquid surface: Wagner’s solution and approximate models [J]. Journal of Fluids and Structures, 2013, 36: 32–49. DOI: 10.1016/j.jfluidstructs.2012.08.004.
    [4] SHAMS A, PORFIRI M. Treatment of hydroelastic impact of flexible wedges [J]. Journal of Fluids and Structures, 2015, 57: 229–246. DOI: 10.1016/j.jfluidstructs.2015.06.017.
    [5] LU C H, HE Y S, WU G X. Coupled analysis of nonlinear interaction between fluid and structure during impact [J]. Journal of Fluids and Structures, 2000, 14(1): 127–146. DOI: 10.1006/jfls.1999.0257.
    [6] STENIUS I, ROSÉN A, KUTTENKEULER J. Hydroelastic interaction in panel-water impacts of high-speed craft [J]. Ocean Engineering, 2011, 38(2−3): 371–381. DOI: 10.1016/j.oceaneng.2010.11.010.
    [7] PANCIROLI R, ABRATE S, MINAK G, et al. Hydroelasticity in water-entry problems: comparison between experimental and SPH results [J]. Composite Structures, 2012, 94(2): 532–539. DOI: 10.1016/j.compstruct.2011.08.016.
    [8] PANCIROLI R. Water entry of flexible wedges: some issues on the FSI phenomena [J]. Applied Ocean Research, 2013, 39: 72–74. DOI: 10.1016/j.apor.2012.10.010.
    [9] HASSOON O H, TARFAOUI M, ALAOUI A E M, et al. Experimental and numerical investigation on the dynamic response of sandwich composite panels under hydrodynamic slamming loads [J]. Composite Structures, 2017, 178: 297–307. DOI: 10.1016/j.compstruct.2017.07.014.
    [10] HASSOON O H, TARFAOUI M, ALAOUI A E M, et al. Mechanical behavior of composite structures subjected to constant slamming impact velocity: an experimental and numerical investigation [J]. International Journal of Mechanical Sciences, 2018, 144: 618–627. DOI: 10.1016/j.ijmecsci.2018.05.035.
    [11] HASSOON O H, TARFAOUI M, ALAOUI A E M, et al. Mechanical performance evaluation of sandwich panels exposed to slamming impact: comparison between experimental and SPH results [J]. Composite Structures, 2019, 220: 776–783. DOI: 10.1016/j.compstruct.2019.04.051.
    [12] KOROBKIN A. Analytical models of water impact [J]. European Journal of Applied Mathematics, 2004, 15(6): 821–838. DOI: 10.1017/S0956792504005765.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  368
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-12
  • 修回日期:  2021-08-10
  • 网络出版日期:  2021-11-01
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回