A review on the improved Whipple shield and related numerical simulations
-
摘要: 基于弹丸在超高速撞击薄板时破碎形成碎片云的机理,Whipple防护结构能够对航天器所面临的空间碎片及微流星体等威胁形成有效防护。通过回顾Whipple防护结构的研究和发展历程,对多层板结构、填充式防护结构、夹芯板结构等进行对比,分析其力学效应和防护性能;总结可应用于含泡沫、蜂窝、梯度和编织等材料的防护结构超高速撞击的数值模拟方法及其改进方法;结合相关材料的超高速撞击试验及数值模拟结果,为防护结构未来的研究方向提出建议。
-
关键词:
- 超高速碰撞 /
- Whipple防护结构 /
- 碎片云 /
- 多层板结构 /
- 填充/夹芯板结构 /
- FEM-SPH自适应耦合算法
Abstract: Based on the formation mechanism of the debris cloud caused by the projectile hypervelocity impacting onto a thin plate, the Whipple shield can effectively protect the spacecraft from space debris and micrometeoroid. By reviewing the research and development of the Whipple shield, and compares the mechanical effects and protective performance of multilayer, stuffed and sandwich shield. The paper also summarizes the application of numerical simulation methods and their improvement for the hypervelocity impact of protective structures containing materials such as foam and honeycomb, etc. By addressing the results of hypervelocity impact tests and numerical simulations of relevant materials, suggestions are made for the future research of the Whipple shield. -
破甲战斗部是毁伤装甲目标的利器,然而,随着装甲防护由单层化向多层化发展,传统实心聚能装药形成的射流在对抗多层防护目标时的毁伤效果受到了极大限制。为此,有学者提出采用串联战斗部对多层防护目标进行毁伤[1]。串联战斗部通常由2~3个附属战斗部组成,并按作用顺序分为前级、中级和后级。在对抗多层防护目标时,前级战斗部在外层防护装甲上造成大口径通孔,后级战斗部通过通孔对内层装甲进行毁伤[2-3]。因此,前级战斗部的扩孔能力直接决定了串联战斗部的整体毁伤效果。Leidel[4]提出可以采用装药的聚能效应形成环形毁伤元,从而实现大口径、大穿深的侵彻效果。
对环形聚能装药的研究已有很多。根据装药结构的不同,环形聚能装药可以分为实心环形聚能装药和中空环形聚能装药[5]。针对实心环形聚能装药结构,王成等[6]提出了等冲量设计法,通过将药型罩外壁进行逐段变壁厚处理,使炸药作用于药型罩内、外相应微元上的冲量相等。徐文龙等[7-9]设计了一种中心开孔式环形装药结构,研究了不同结构因素及药型罩材料对射流轴向速度和径向速度的影响规律,该结构形成的环形EFP(explosively formed projectile)除了具有良好的飞行稳定性之外,还具有较强的侵彻能力。相较实心环形聚能装药结构,中空环形聚能装药在形成相同口径开孔的同时,所需药量更小。曹涛等[10-11]研究了起爆点数量、药型罩形状、曲率半径等参数对环形聚能装药成型和侵彻效果的影响。王伟力等[12]对环形装药的药型罩、起爆方式和炸高等方案进行了优化设计。段嘉庆等[13]优化了内外罩等动量方法,提出了药型罩同步压垮的设计方法,该方法形成的射流不易偏斜,能够大大改善射流成型效果。何降润等[14]讨论了内外壳体材料相同时,壳体厚度比对环形射流侵彻性能的影响规律。
然而,中空环形聚能装药结构在形成环形侵彻体时,内侧壳体在爆轰产物作用下也会在装药中轴线上汇聚,形成向弹体前、后两个方向运动的中心侵彻体[15-17]。向前运动的毁伤元能够增强对装甲目标的毁伤效果,但向后运动的毁伤元会对后级战斗部的结构造成破坏。为了减小中心侵彻体侵彻威力的同时增加环形射流毁伤威力,本文中对比了四种不同的壳体材料组合下,中空环形聚能装药形成的中心侵彻体对后端靶板的侵彻威力,基于中心侵彻体侵彻深度最小的壳体材料组合,研究药型罩偏心距离和壁厚对环形射流成型和侵彻特性的影响规律,并调整不同炸高,提升环形射流的侵彻威力。基于优化的装药结构及炸高,设计环形聚能装药静破甲试验,验证本文数值模拟结果的准确性。
1. 非对称中空环形聚能装药模型
1.1 几何模型
设计的非对称中空环形聚能装药结构如图1所示,非对称指药型罩的横截面形状不关于罩顶呈镜面对称,通过调整锥顶位置改变药型罩和装药的质量分布,通过控制罩顶的移动距离Δr实现对环锥罩结构的调整,将适配于这种偏心环锥罩的装药结构命名为非对称中空环形聚能装药结构。基于此结构,研究环形聚能装药结构对射流成型和侵彻威力的影响规律。
装药的径向厚度为d,装药高度为g;药型罩为等壁厚结构,壁厚为b,研究过程中保持药型罩高度f不变;装药起爆方式为顶部环形起爆,起爆环直径为e,与环锥罩顶直径相同,炸高为l;内壳厚度为ci,外壳厚度为co。
1.2 数值模拟模型
采用AUTODYN软件对环形射流的成型过程进行数值模拟。模型由装药、内外壳体、药型罩和靶板组成,药型罩壁厚b=0.05d,内外壳体壁厚ci=co=0.08d。环形装药部分采用多物质欧拉算法进行计算,欧拉域边界设置流出边界条件,模拟装药在空旷场情景下的爆轰过程。靶板采用拉格朗日算法进行计算。根据射流成型网格收敛性研究[18],本文网格尺寸选为0.25 mm×0.25 mm。为了提高数值模拟研究的计算效率,建立二维轴对称模型进行计算。为便于对模型进行展示,将二维模型沿对称轴旋转180°,所得中空环形聚能装药的有限元模型如图2所示。
装药选用PBX-9404炸药,采用JWL状态方程描述其爆炸过程,材料参数如表1所示,其中ρ为材料密度,A、B、R1、R2、ω为状态方程参数,vD为炸药爆速,E0为炸药的初始比内能,pCJ为炸药爆压。药型罩材料高导无氧铜和壳体材料4340钢均采用Linear状态方程和Johnson-Cook强度模型来描述材料在高温高压下的变形,材料参数如表2所示,其中K为体积模量,G为剪切模量,A1、B1、n、C、m均为与材料自身性质有关的参数。靶板材料为均质装甲钢,壳体材料为铝合金,靶板和壳体均采用Shock状态方程描述,材料参数如表3所示,其中γ为Grüneisen系数,c1为材料声速,S1为常数。在计算过程中,对靶板材料设置了Johnson-Cook失效模型[19],模拟靶板的失效现象,失效参数如表4所示,D1、D2、D3、D4、D5为材料断裂毁伤参数。
表 1 装药JWL状态方程参数Table 1. 1JWL equation of state parameters of PBX-9404 ρ/(kg·m−3) A/GPa B/GPa R1 R2 ω vD/(m·s−1) E0/(kJ·m−3) pCJ/GPa 1 840 852.4 18.02 4.6 1.3 0.38 8 800 1.02e7 37 表 2 药型罩和壳体材料参数Table 2. Material parameters of liner and casing材料 ρ/(kg·m−3) K/GPa G/GPa A1/MPa B1/MPa n C m 高导无氧铜 8 960 129 46 90 292 0.31 0.025 1.09 4340钢 7 830 159 81.8 792 510 0.26 0.014 1.03 表 3 靶板和壳体材料参数Table 3. Material parameters of target and casing材料 ρ/(kg·m−3) γ c1/(m·s−1) S1 铝合金 2 785 2.00 5 328 1.338 装甲钢 7 860 1.67 4 610 1.730 2. 壳体材料对中心侵彻体侵彻特性的影响
为研究内、外壳体材料对内壳形成的中心侵彻体侵彻特性的影响规律,选取钢和铝合金两种不同密度的常用材料,设计了内外壳均为钢、外壳为钢内壳为铝合金、外壳为铝合金内壳为钢和内外壳均为铝合金的四种不同内外壳体材料组合的环形聚能装药结构,由于药型罩结构对中心侵彻体的影响不大,因此仅选取药型罩为罩顶向外侧偏移距离Δr=0.05d的偏心环锥罩进行研究。后端靶板厚度为1.6d,与装药之间的距离为1.12d,有限元模型如图3所示。
通过计算,四种工况下中心侵彻体对后端靶板的侵彻结果如图4所示。
不同工况下中心侵彻体侵彻后端靶板形成的中心孔径和侵彻深度如表5所示。
表 5 不同壳体材料组合时后端靶板的中心孔尺寸Table 5. Core hole sizes in rear target with different casing material combinations壳体材料 后端靶板中心孔深度/d 后端靶板中心孔直径/d 外钢内钢 1.600(打穿) 0.24 外钢内铝合金 1.008 0.44 外铝合金内钢 1.600(打穿) 0.24 外铝合金内铝合金 1.036 0.44 从上述结果可以看出,当内壳材料为铝时,中心侵彻体对后端靶板侵彻形成的中心孔呈现孔径较大但深度较小的形态;当内壳材料为钢时,形成的中心孔呈现孔径较小但深度较大的形态。考虑到环形聚能装药常常应用于串联战斗部前级结构的用途,其中心侵彻体对后端靶板形成的侵彻深度越小,对后级战斗部的影响越小。对比不同工况下的中心孔侵彻深度,内壳为铝合金时的中心孔平均侵彻深度较内壳为钢时的平均侵彻深度低36.13%,内壳为铝合金、外壳为钢时,中心侵彻体对后端靶板的侵彻深度最小。外壳材料对中心孔的侵彻效果影响较小,当选用波阻抗更大的外壳材料时,爆轰波反射形成的反射冲击波与爆轰波叠加作用更大,可以提高药型罩的压垮速度,进而提高环形射流速度,有利于提升环形射流的毁伤效果[14]。因此本文中选取外壳材料为钢,内壳材料为铝合金的壳体材料组合进行研究。
3. 环形射流侵彻特性影响因素分析
3.1 罩顶偏心距离
设计罩顶偏心距离Δr为−0.10d、−0.05d、0、0.05d和0.10d五种不同的环锥罩结构,其中药型罩顶向远离装药轴线方向偏移时偏心距离Δr为正,向靠近装药轴线方向偏移时偏心距离Δr为负,Δr为0时的药型罩即为非偏心环锥罩。通过计算,五种工况下环形射流成型及侵彻结果如图5所示。
从图5中可以看出,不同偏心距离的环锥形药型罩形成的射流都有不同程度的径向偏移,原因在于,空心环形装药爆轰后在药型罩内、外侧产生的压力不同,从而使得射流产生径向偏移。为量化环形射流径向偏移的程度,定义单侧射流主体部分宽度为射流径向偏移量k,如图6所示。
不同工况下环形射流的径向偏移量和侵彻深度随偏心距离的变化规律如图7所示。
从上述结果可以看出,射流的径向偏移量和侵彻深度具有相反的趋势。由于非偏心环锥罩内侧装药量低于外侧装药量,导致形成的射流出现径向偏移。当环锥罩顶向内侧偏移时,内侧装药量进一步减少,导致内外侧装药量差异增加,形成的射流径向偏移量增加,侵彻深度减小。当罩顶向外侧偏移0.05d时,外侧装药量减小,内侧装药量增加,内外侧装药量差异减小,因此此时形成的射流准直性较好,且对靶板的侵彻深度较大。当罩顶进一步向外侧偏移时,内侧装药量大于外侧装药量,射流径向偏移量增加,且偏移方向与非偏心环锥罩相反,对靶板的侵彻威力下降。由此可知,针对本文所研究的装药结构,将环锥罩顶向外侧偏移0.05d有助于提高射流的准直性和侵彻威力。
3.2 药型罩壁厚
为探索药型罩壁厚对中空环形聚能射流成型及侵彻效果的影响规律,在外壳为钢、内壳为铝合金的壳体材料组合和罩顶偏心距离
Δr =0.05d的环锥罩基础上,设计了药型罩壁厚b为0.030d、0.040d、0.045d、0.050d和0.060d的五种不同的工况,五种工况下环形射流的成型及侵彻结果如图8所示。观察不同工况下射流的成型状态可知,在射流偏心距离相同的情况下,射流的径向偏移程度相似,不同工况中射流的侵彻深度和头部速度随药型罩壁厚的变化规律如图9所示。
从以上计算结果可以看出,在装药结构和药型罩形状不变的情况下,随着药型罩壁厚的增加,药型罩质量增加,驱动药型罩所需的能量增加,因此射流成型后头部速度减小。在毁伤威力方面,随着药型罩壁厚的增加,侵彻深度呈先增加后减小的趋势,其中壁厚b=0.045d的工况下,射流侵彻深度较大。这是因为壁厚过小时药型罩质量小,导致形成的射流过细且有效质量降低,不利于对靶板的侵彻。而药型罩壁厚过大时射流成型后头部速度降低,同样不利于后续的侵彻。因此,针对本文所研究的中空环形聚能装药而言,壁厚为0.045d的偏心环锥罩毁伤效果较好。
3.3 炸高
在偏心距离
Δr 为0.05d、壁厚b为0.045d的偏心环锥罩的基础上,设计了l为0.80d、0.96d、1.12d、1.28d和1.44d五种不同的炸高。通过计算,五种工况下环形射流侵彻结果如图10所示。不同工况下环形射流的侵彻深度随炸高的变化规律如图11所示。从图11可知,随着炸高的增大,射流侵彻深度呈先增大后减小的趋势,这是因为,当药型罩结构和装药结构相同时,射流成型效果也相同,但炸高较小时,射流未完全成型,此时射流的侵彻深度较小。随着飞行距离的增大,射流触靶前已经成型,其侵彻深度有所增大。当炸高进一步增大时,射流飞行距离增大,触靶前射流头部断裂,侵彻深度减小。由此可见,环形射流对炸高敏感性强,当射流成型且未发生断裂时其侵彻效果最好,本文所研究的环形射流在炸高为1.12d时可对靶板形成较好的侵彻效果。
4. 试验验证
4.1 试验装置
为验证数值模拟的计算结果,采用精车工艺分别制备了非偏心环锥罩和偏心环锥罩两种药型罩,开展了环形聚能装药静破甲试验,其中,偏心环锥罩为本文优化后的最终结构,非偏心环锥罩为对比工况。装药结构参数及炸高如表6所示。
表 6 试验中的环形聚能装药结构参数及炸高Table 6. Structural parameters and standoff of annular shaped charge in the test环锥罩 Δr/d b/d l/d 非偏心环锥罩 0 0.045 1.12 偏心环锥罩 0.05 0.045 1.12 制备出的药型罩如图12~13所示。为降低试验结果的偶然性,对两种罩型分别开展两次重复试验。内、外壳体材料分别选取铝合金和钢。靶板尺寸为12d×12d×0.8d,材料为均质装甲钢,采用12点起爆模拟环形起爆。
试验布置如图14所示,主要由环形聚能装药、支撑板、炸高筒和靶板组成。
4.2 试验结果
靶板侵彻结果如图15所示,非偏心环锥罩形成的环形射流未穿透靶板,仅在靶板表面留下一个圆形凹坑,但装药内壳形成的中心侵彻体击穿靶板,在靶板中央形成一个圆形通孔;偏心环锥罩形成的环形射流击穿靶板,在靶板表面留下一个大直径圆孔和圆形塞块,塞块中心同样存在内壳形成的中心侵彻体击穿的圆形通孔。
为对比两种环形聚能装药形成的射流对靶板的毁伤情况,将试验后的靶板分别沿图15中红色虚线位置剖切为两部分,从截面处观察侵彻结果,非偏心环锥罩和偏心环锥罩试验所得结果与数值模拟结果对比分别如图16和图17所示。
由于三维计算模型需要消耗大量的计算资源,而二维轴对称模型的计算精度已足够满足本文的研究需求,因此本文中使用的数值模拟模型为二维模型,只是在展示时进行了三维填充,这就导致在二维模型上出现的失效将会以轴对称的方式进行三维展示,因此,在图16和图17结果中未使用三维模型模拟射流对靶板破坏形态的影响细节。总体来说,试验与数值模拟中靶板侵彻孔径形态相似。为对比二者的破坏参数,定义侵彻后的靶板几何参数如图18所示,图中d1为环形侵彻通道外径,d2为环形侵彻通道内径,d3为中心侵彻孔径。试验和数值模拟中的靶板破坏参数如表7所示。
表 7 数值模拟结果与试验结果的对比Table 7. Comparison between numerical simulation and experimental results罩型 方法 d1 d2 d3 h 非偏心环锥罩 试验 4.40d 3.44d 1.00d 0.68d 数值模拟 4.48d 3.68d 0.88d 0.64d 误差 1.81% 6.98% 12.00% 5.88% 偏心环锥罩 试验 4.74d 3.84d 0.80d 0.80d(打穿) 数值模拟 4.48d 4.00d 0.88d 0.80d(打穿) 误差 5.08% 4.17% 10.00% − 从表7可知,数值模拟与试验得到的侵彻后靶板的形貌基本一致,几何参数误差在合理范围内,说明了本文研究中采用的数值模拟模型的合理性及所得结论的准确性。
5. 结 论
设计了一种非对称中空环形聚能装药结构。基于钢和铝合金两种常用材料,设计了不同壳体材料组合并研究了壳体材料对中心侵彻体侵彻特性的影响,通过改变环锥罩的偏心距离和壁厚,调整装药和药型罩的质量分布,形成准直环形射流,研究了炸高对环形射流侵彻威力的影响规律,开展了环形聚能装药静破甲试验,得到以下结论。
(1)内壳材料为铝合金时,形成的中心侵彻体侵彻孔洞孔径大、侵彻深度小,内壳材料为钢时,形成的中心孔孔径小、侵彻深度大,为减小环形聚能装药对后级战斗部的影响,选取铝合金作为内壳材料。选用波阻抗较高的钢作为外壳材料有利于提高环形射流的速度。
(2)非偏心环锥罩形成的射流存在径向偏移,且侵彻深度较小;罩顶向内侧移动会导致环形射流的径向偏移现象加剧;罩顶向外侧移动0.05d时,射流准直性较好且侵彻深度较大,但罩顶继续向外侧偏移会导致射流准直性和侵彻威力降低。药型罩壁厚为0.03d~0.06d时,随着壁厚的增加,射流头部速度不断减小,壁厚为0.045d的偏心环锥罩形成射流的毁伤效果较好。环形射流侵彻深度对炸高较为敏感,炸高为0.80d~1.44d时,随着炸高的增加,射流侵彻深度呈现先增大后减小的趋势,炸高为1.12d时射流侵彻深度较大。
(3)设计了环形聚能装药静破甲试验,采用12点起爆模拟环形起爆,试验结果与数值模拟结果误差在12%以内,且试验所得侵彻通道形态与数值模拟结果具有较好的一致性,验证了本文数值模拟模型的合理性和所得结论的准确性。
-
-
[1] ANZ-MEADOR P D, OPIELA J N, SHOOTS D, et al. History of on-orbit satellite fragmentations: NASA/TM-2018-220037 [R]. Houston, Texas: Lyndon B. Johnson Space Center, NASA, 2018. [2] 龚自正, 徐坤博, 牟永强, 等. 空间碎片环境现状与主动移除技术 [J]. 航天器环境工程, 2014, 31(2): 129–135. DOI: 10.12126/see.2014.02.003.GONG Z Z, XU K B, MU Y Q, et al. The space debris environment and the active debris removal techniques [J]. Spacecraft Environment Engineering, 2014, 31(2): 129–135. DOI: 10.12126/see.2014.02.003. [3] 郑世贵, 闫军. 空间碎片防护需求与防护材料进展 [J]. 国际太空, 2014(6): 49–53.ZHENG S G, YAN J. A review on the space debris protection and protective materials [J]. Space International, 2014(6): 49–53. [4] 龚自正, 杨继运, 张文兵, 等. 航天器空间碎片超高速撞击防护的若干问题 [J]. 航天器环境工程, 2007, 24(3): 125–130. DOI: 10.3969/j.issn.1673-1379.2007.03.001.GONG Z Z, YANG J Y, ZHANG W B, et al. Spacecraft protection from the hypervelocity impact of space meteoroid and orbital debris [J]. Spacecraft Environment Engineering, 2007, 24(3): 125–130. DOI: 10.3969/j.issn.1673-1379.2007.03.001. [5] WHIPPLE F L. Meteorites and space travel [J]. The Astronomical Journal, 1947, 52: 131. DOI: 10.1086/106009. [6] PIEKUTOWSKI A J. Formation and description of debris clouds produced by hypervelocity impact [R]. Huntsville, Alabama: Marshall Space Flight Center, NASA, 1996. [7] ANDERSON JR C E, TRUCANO T G, MULLIN SA. Debris cloud dynamics [J]. International Journal of Impact Engineering, 1990, 9(1): 89–113. DOI: 10.1016/0734-743X(90)90024-P. [8] PIEKUTOWSKI A J. Debris clouds generated by hypervelocity impact of cylindrical projectiles with thin aluminum plates [J]. International Journal of Impact Engineering, 1987, 5(1–4): 509–518. DOI: 10.1016/0734-743X(87)90066-2. [9] MORRISON R H. A preliminary investigation of projectile shape effects in hypervelocity impact of a double-sheet structure: TN-D-6944 [R]. Washington: National Aeronautics and Space Administration, 1972. [10] MACLAY T D, CULP R D, BAREISS L, et al. Topographically modified bumper concepts for spacecraft shielding [J]. International Journal of Impact Engineering, 1993, 14(1–4): 479–489. DOI: 10.1016/0734-743X(93)90044-8. [11] COUR-PALAIS B G, CREWS J L. A multi-shock concept for spacecraft shielding [J]. International Journal of Impact Engineering, 1990, 10(1–4): 135–146. DOI: 10.1016/0734-743X(90)90054-Y. [12] CHRISTIANSEN E L. Performance equations for advanced orbital debris shields [C]// Space Programs and Technologies Conference. Huntsivolle: AIAA, 1992. [13] CREWS J L, CHRISTIANSEN E L. The NASA JSC hypervelocity impact test facility (HIT-F) [C]// Space Programs and Technologies Conference. Huntsivolle: AIAA, 1992. DOI: 10.2514/6.1992-1640. [14] CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1–3): 217–228. DOI: 10.1016/0734-743X(95)99848-L. [15] DESTEFANIS R, SCHÄFER F, LAMBERT M, et al. Enhanced space debris shields for manned spacecraft [J]. International Journal of Impact Engineering, 2003, 29(1–10): 215–226. DOI: 10.1016/j.ijimpeng.2003.09.019. [16] RYAN S, HEDMAN T, CHRISTIANSEN E L. Honeycomb vs. foam: evaluating potential upgrades to ISS module shielding [J]. Acta Astronautica, 2010, 67: 818–825. DOI: 10.1016/j.actaastro.2010.05.021. [17] 周昊, 郭锐, 南博华, 等. 填充式波纹夹层结构超高速撞击特性仿真 [J]. 国防科技大学学报, 2017, 39(2): 57–63. DOI: 10.11887/j.cn.201702008.ZHOU H, GUO R, NAN B H, et al. Simulation on hypervelocity impact characteristics of stuffed corrugation-cored sandwiches [J]. Journal of National University of Defense Technology, 2017, 39(2): 57–63. DOI: 10.11887/j.cn.201702008. [18] SCHONBERG W P, TULLOS R J. Spacecraft wall design for increased protection against penetration by orbital debris impacts [J]. AIAA Journal, 1991, 29(12): 2207–2214. DOI: 10.2514/6.1990-3663. [19] KAWAI N, KURODA Y, NAGANO M, et al. Stress-wave propagation and damage formation associated with hypervelocity penetration into polycarbonate [J]. Procedia Engineering, 2017, 204: 255–261. DOI: 10.1016/j.proeng.2017.09.733. [20] KUMAR S K S, JURADO-MANRIQUEZ E A, KIM Y H, et al. Polybenzimidazole (PBI) film coating for improved hypervelocity impact energy absorption for space applications [J]. Composite Structures, 2018, 188: 72–77. DOI: 10.1016/j.compstruct.2017.12.052. [21] LI T, YU X, LIU H F, et al. Tensile behavior of C/SiC composites plate after hypervelocity penetration: residual strength and fracture mechanism [J]. Composite Structures, 2018, 189: 378–385. DOI: 10.1016/j.compstruct.2018.01.058. [22] WU Q, ZHANG Q M, LONG R R, et al. Potential space debris shield structure using impact-initiated energetic materials composed of polytetrafluoroethylene and aluminum [J]. Applied Physics Letters, 2016, 108: 135–183. DOI: 10.1063/1.4943584. [23] COUR-PALAIS B G. Meteorid environment model: NASA/SP-8013 [R]. Washington: National Aeronautics and Space Administration, 1969. DOI: CDSTIC.GRA.00159492. [24] CHRISTIANSEN E L. Meteoroid/debris shielding: NASA/TP-2003-210788 [R]. Houston, Texas: NASA Johnson Space Center, 2003. [25] HAYASHIDA K B, ROBINSON J H. Double-plate penetration equations: NASA/TM-2000-209907 [R]. Alabama: Marshall Space Flight Center, NASA, 2000. [26] 郑建东, 龚自正, 童靖宇, 等. 一种新的Whipple防护结构弹道极限方程准确率分析 [J]. 航天器环境工程, 2012, 29(2): 134–138. DOI: 10.3969/j.issn.1673-1379.2012.02.004.ZHENG J D, GONG Z Z, TONG J Y, et al. Accuracy analysis of a new Whipple shield ballistic limit equations [J]. Spacecraft Environment Engineering, 2012, 29(2): 134–138. DOI: 10.3969/j.issn.1673-1379.2012.02.004. [27] CHRISTIANSEN E L, KERR J H. Mesh double-bumper shield: a low-weight alternative for spacecraft meteoroid and orbital debris protection [J]. International Journal of Impact Engineering, 1993, 14(1 –4): 169–180. DOI: 10.1016/0734-743X(93)90018-3. [28] CHRISTIANSEN E L. Advanced meteoroid and debris shielding concepts [C]// Orbital Debris Conference: Technical Issues and Future Directions, AIAA. 1990. DOI: 10.2514/6.1990-1336. [29] CHRISTIANSEN E L, KERR J H, DE LA FUENTE H M, et al. Flexible and deployable meteoroid/debris shielding for spacecraft [J]. International Journal of Impact Engineering, 1999, 23: 125–136. DOI: 10.1016/S0734-743X(99)00068-8. [30] RYAN S, CHRISTIANSEN E L. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding [J]. Acta Astronautica, 2013, 83: 216–231. DOI: 10.1016/j.actaastro.2012.09.012. [31] 贾斌, 马志涛, 庞宝君. 填充泡沫铝防护结构的超高速撞击数值模拟 [J]. 哈尔滨工业大学学报, 2011, 43(1): 16–20. DOI: 10.11918/j.issn.0367-6234.2011.01.004.JIA B, MA Z T, PANG B J. Numerical simulation investigation in hypervelocity impact on Al-foam stuffed shields [J]. Journal of Harbin Institute of Technology, 2011, 43(1): 16–20. DOI: 10.11918/j.issn.0367-6234.2011.01.004. [32] 贾斌, 马志涛, 庞宝君. 含泡沫铝防护结构的超高速撞击数值模拟研究 [J]. 高压物理学报, 2009, 23(6): 453–459. DOI: 10.11858/gywlxb.2009.06.009.JIA B, MA Z T, PANG B J. Numerical simulation investigation in hypervelocity impact on shield structure containing aluminum foam [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 453–459. DOI: 10.11858/gywlxb.2009.06.009. [33] 刘文祥, 张德志, 张向荣, 等. 填充式泡沫铝防护结构的弹道极限 [J]. 爆炸与冲击, 2012, 32(1): 43–46. DOI: 10.11883/1001-1455(2012)01-0043-04.LIU W X, ZHANG D Z, ZHANG X R, et al. Ballistic limit of an aluminum foam-filledshield [J]. Explosion and Shock Waves, 2012, 32(1): 43–46. DOI: 10.11883/1001-1455(2012)01-0043-04. [34] DESTEFANIS R, SCHÄFER F, LAMBERT M, et al. Selecting enhanced space debris shields for manned spacecraft [J]. International Journal of Impact Engineering, 2006, 33(1–12): 219–230. DOI: 10.1016/j.ijimpeng.2006.09.065. [35] TAYLOR E A, GLANVILLE J P, CLEGG R A, et al. Hypervelocity impact on spacecraft honeycomb: hydrocode simulation and damage laws [J]. International Journal of Impact Engineering, 2003, 29: 691–702. DOI: 10.1016/j.ijimpeng.2003.10.016. [36] TAYLOR E A. Computational study of hypervelocity impact onto Whipple bumpers and sandwich plates with honeycomb core [R]. European Space Agency/European Space Research and Technology Centre, 1999. [37] RYAN S, SCHÄFER F, DESTEFANIS R, et al. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures [J]. Advances in Space Research, 2008, 41(7): 1152–1166. DOI: 10.1016/j.asr.2007.02.032. [38] SIBEAUD J-M, PRIEUR C, PUILLET C. Hypervelocity impact on honeycomb target structures: experimental part [C]// The 4th European Conference on Space Debris. Darmstadt, Germany: The European Space Agency, 2005. [39] SIBEAUD J-M, THAMIE L, PUILLET C. Hypervelocity impact on honeycomb target structures: experiments and modeling [J]. International Journal of Impact Engineering, 2008, 35(12): 1799–1807. DOI: 10.1016/j.ijimpeng.2008.07.037. [40] JEX D W, MAC KAY C, MILLER A. The characteristics of penetration for a double-sheet structure with honeycomb: NASA/TM-X-53974 [R]. Huntsville: Marshall Space Flight Center, NASA, 1970. [41] DECONINCK P, ABDULHAMID H, HÉREIL P L, et al. Experimental and numerical study of submillimeter-sized hypervelocity impacts on honeycomb sandwich structures [J]. Procedia engineering, 2017, 204: 452–459. DOI: 10.1016/j.proeng.2017.09.740. [42] NITTA K, HIGASHIDE M, KITAZAWA Y, et al. Response of a aluminum honeycomb subjected to hypervelocity impacts [J]. Procedia Engineering, 2013, 58: 709–714. DOI: 10.1016/j.proeng.2013.05.082. [43] SCHONBERG W, SCHÄFER F, PUTZAR R. Hypervelocity impact response of honeycomb sandwich panels [J]. Acta Astronautica, 2010, 66(3–4): 455–466. DOI: 10.1016/j.actaastro.2009.06.018. [44] ANON. Effectiveness of aluminum honeycomb shields in preventing meteoroid damage to liquid-filled spacecraft tanks: NASA/CR-65261 [R]. Salt Lake City: Utah Research and Development Co. Inc., NASA, 1964. [45] LATHROP B L, SENNETT R E. Effects of hypervelocity impact on honeycomb structures [J]. Journal of Spacecraft and Rockets, 1968, 5(12): 1496–1497. DOI: 10.2514/3.29514. [46] LAMBERT M, SCHÄFER F K, GEYER T. Impact damage on sandwich panels and multi-layer insulation [J]. International Journal of Impact Engineering, 2001, 26(1–10): 369–380. DOI: 10.1016/S0734-743X(01)00108-7. [47] KANG P, YOUN S K, LIM J H. Modification of the critical projectile diameter of honeycomb sandwich panel considering the channeling effect in hypervelocity impact [J]. Aerospace Science and Technology, 2013, 29: 413–425. DOI: 10.1016/j.ast.2013.04.011. [48] RYAN S, ORDONEZ E, CHRISTIANSEN E L, et al. Hypervelocity impact performance of open cell foam core sandwich panel structures [C]// The 11th Hypervelocity Impact Symposium. Freiburg, Germany, 2010. [49] YASENSKY J, CHRISTIANSEN E L. Hypervelocity impact evaluation of metal foam core sandwich structures: NASA/JSC63945 [R]. NASA, 2007. [50] RYAN S, HEDMAN T, CHRISTIANSEN E L. Honeycomb vs. foam: evaluating a potential upgrade to international space station module shielding for micrometeoroids and orbital debris: NASA/TM-2009-214793 [R]. Arizona: USRA Lunar and Planetary Institute, NASA, 2009. [51] VOILLAT R, GALLIEN F, MORTENSEN A, et al. Hypervelocity impact testing on stochastic and structured open porosity cast Al-Si cellular structures for space applications [J]. International Journal of Impact Engineering, 2018, 120: 126–137. DOI: 10.1016/j.ijimpeng.2018.05.002. [52] GAITANAROS S, KYRIAKIDES S. On the effect of relative density on the crushing and energy absorption of open-cell foams under impact [J]. International Journal of Impact Engineering, 2015, 82: 3–13. DOI: 10.1016/j.ijimpeng.2015.03.011. [53] SHI X P, LIU S Y, NIE H L, et al. Study of cell irregularity effects on the compression of closed-cell foams [J]. International Journal of Mechanical Sciences, 2018, 135: 215–225. DOI: 10.1016/j.ijmecsci.2017.11.026. [54] SANCHEZ G A, CHRISTIANSEN E L. FGB energy block meteoroid and orbital (M/OD) debris shield test report: NASA/JSC-27460 [R]. Washington: National Aeronautics and Space Administration, 1996. [55] THOMA K, SCHÄFER F, HIERMAIER S, et al. An approach to achieve progress in spacecraft shielding [J]. Advances in Space research, 2004, 34(5): 1063–1075. DOI: 10.1016/j.asr.2003.03.034. [56] 张雄, 刘岩, 马上. 无网格法的理论及应用 [J]. 力学进展, 2009, 39(1): 1–36. DOI: 10.3321/j.issn:1000-0992.2009.01.001.ZHANG X, LIU Y, MA S. Meshfree methods and their applications [J]. Advances in Mechanics, 2009, 39(1): 1–36. DOI: 10.3321/j.issn:1000-0992.2009.01.001. [57] 张雄, 宋康祖, 陆明万. 无网格法研究进展及其应用 [J]. 计算力学学报, 2003, 20(6): 730–742. DOI: 10.7511/jslx20036138.ZHANG X, SONG K Z, LU M W. Research progress and application of meshless method [J]. Chinese Journal of Computational Mechanics, 2003, 20(6): 730–742. DOI: 10.7511/jslx20036138. [58] 胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展 [J]. 力学学报, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.HU D A, HAN X, XIAO Y H, et al. Research developments of smoothed particle hydrodynamicsmethod and its coupling with finite element method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092. [59] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375–389. DOI: 10.1093/mnras/181.3.375. [60] LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal, 1977, 82(12): 1013–1024. DOI: 10.1086/112164. [61] LIBERSKY L D, PETSCHEK A G. Smooth particle hydrodynamics with strength of materials [J]. Advances in the Free Lagrange Method, 1990, 248: 248–257. DOI: 10.1007/3-540-54960-9_58. [62] LIBERSKY L D, RANDLES P W, CARNEY T C, et al. Recent improvements in SPH modeling of hypervelocity impact [J]. International Journal of Impact Engineering, 1997, 20(6–10): 525–532. DOI: 10.1016/S0734-743X(97)87441-6. [63] LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response [J]. Journal of Computational Physics, 1993, 109(1): 67–75. DOI: 10.1006/jcph.1993.1199. [64] RANDLES P W, LIBERSKY L D. Smoothed particle hydrodynamics: some recent improvements and applications [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1–4): 375–408. DOI: 10.1016/S0045-7825(96)01090-0. [65] HAYHURST C J, CLEGG R A. Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates [J]. International Journal of Impact Engineering, 1997, 20(1–5): 337–348. DOI: 10.1016/S0734-743X(97)87505-7. [66] 崔伟峰, 曾新吾. SPH算法在超高速碰撞数值模拟中的应用 [J]. 国防科技大学学报, 2007, 29(2): 43–46. DOI: 10.3969/j.issn.1001-2486.2007.02.010.CUI W F, ZENG X W. Smoothed particle hydrodynamics algorithm applied in numerical simulation of hypervelocity impact [J]. Journal of National University of Defense Technology, 2007, 29(2): 43–46. DOI: 10.3969/j.issn.1001-2486.2007.02.010. [67] 徐志宏, 汤文辉, 罗永. SPH 算法在高速侵彻问题中的应用 [J]. 国防科技大学学报, 2005, 27(4): 41–44. DOI: 10.3969/j.issn.1001-2486.2005.04.010.XU Z H, TANG W H, LUO Y. Smoothed particle hydrodynamics algorithm applied in penetration problem [J]. Journal of National University of Defense Technology, 2005, 27(4): 41–44. DOI: 10.3969/j.issn.1001-2486.2005.04.010. [68] LIU G R, LIU M B, LI S F. Smoothed particle hydrodynamics: a meshfree method [J]. Computational Mechanics, 2004, 33: 491–491. DOI: 10.1007/s00466-004-0573-1. [69] DYKA C T, INGEL R P, FLIPPEN L D. A new approach to dynamic condensation for FEM [J]. Computers & Structures, 1995, 61(4): 763–773. DOI: 10.1016/0045-7949(96)00017-X. [70] SWEGLE J W, HICKS D L, ATTAWAY S W. Smoothed particle hydrodynamics stability analysis [J]. Journal of Computational Physics, 1995, 116(1): 123–134. DOI: 10.1006/jcph.1995.1010. [71] 傅学金, 强洪夫, 杨月诚. 固体介质中SPH方法的拉伸不稳定性问题研究进展 [J]. 力学进展, 2007, 37(3): 375–388. DOI: 10.3321/j.issn:1000-0992.2007.03.005.FU X J, QIANG H F, YANG Y C. Advances in the tensile instability of smoothed particle hydrodynamics applied to solid dynamics [J]. Advances in Mechanics, 2007, 37(3): 375–388. DOI: 10.3321/j.issn:1000-0992.2007.03.005. [72] MORRIS J P. A study of the stability properties of smooth particle hydrodynamics [J]. Publications of the Astronomical Society of Australia, 1996, 13(1): 97–102. DOI: 10.1017/S1323358000020610. [73] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析 [J]. 物理学报, 2010, 59(6): 3654–3662. DOI: 10.7498/aps.59.3654.LIU M B, CHANG J Z. Particle distribution and numerical stability in smoothed particle hydrodynamics method [J]. Acta Physica Sinica, 2010, 59(6): 3654–3662. DOI: 10.7498/aps.59.3654. [74] 卞梁, 王肖钧, 章杰, 等. 高速碰撞数值计算中的 SPH 分区算法 [J]. 计算物理, 2011, 28(2): 207–212. DOI: 10.3969/j.issn.1001-246X.2011.02.007.BIAN L, WANG X J, ZHANG J, et al. Numerical simulation of hypervelocity impact with subdomains in SPH computation [J]. Chinese Journal of Computational Physics, 2011, 28(2): 207–212. DOI: 10.3969/j.issn.1001-246X.2011.02.007. [75] 倪国喜, 王瑞利, 林忠, 等. 任意区域上的粒子均匀分布方法 [J]. 计算力学学报, 2007, 24(4): 408–413. DOI: 10.3969/j.issn.1007-4708.2007.04.005.NI G X, WANG R L, LIN Z, et al. Equi-distribution of particles in arbitrary domain [J]. Chinese Journal of Computational Mechanics, 2007, 24(4): 408–413. DOI: 10.3969/j.issn.1007-4708.2007.04.005. [76] 董晃晃. SPH 的粒子生成方法及其在弹体侵彻金属靶中的应用[D]. 南昌: 华东交通大学, 2017.DONG H H. Particle generation method for SPH and the application of SPH to penetration of metal targets by projectiles [D]. Nanchang: East China Jiaotong University, 2017. [77] DYKA C T, RANDLES P W, INGEL R P. Stress point for tension instability in SPH [J]. International Journal for Numerical Methods in Engineering, 1997, 40(13): 2325–2341. DOI: 10.1002/(SICI)1097-0207(19970715)40:13<2325::AID-NME161>3.0.CO,2. [78] MONAGHAN J J. SPH without a tensile instability [J]. Journal of Computational Physics, 2000, 159(2): 290–311. DOI: 10.1006/jcph.2000.6439. [79] LIU M B, LIU G R, ZONG Z. An overview on smoothed particle hydrodynamics [J]. International Journal of Computational Methods, 2008, 5(1): 135–188. DOI: 10.1142/S021987620800142X. [80] LIU M B, XIE W P, LIU G R. Modeling incompressible flows using a finite particle method [J]. Applied Mathematical Modelling, 2005, 29(12): 1252–1270. DOI: 10.1016/j.apm.2005.05.003. [81] LIU M B, LIU G R. Restoring particle consistency in smoothed particle hydrodynamics [J]. Applied Numerical Mathematics, 2006, 56(1): 19–36. DOI: 10.1016/j.apnum.2005.02.012. [82] 杨秀峰, 刘谋斌. 光滑粒子动力学 SPH 方法应力不稳定性的一种改进方案 [J]. 物理学报, 2012, 61(22): 224701. DOI: 10.7498/aps.61.224701.YANG X F, LIU M B. Improvement on stress instability in smoothed particle hydrodynamics [J]. Acta Physica Sinica, 2012, 61(22): 224701. DOI: 10.7498/aps.61.224701. [83] GRADY D E, WINFREE N A. Impact fragmentation of high-velocity compact projectiles on thin plates: a physical and statistical characterization of fragment debris [J]. International Journal of Impact Engineering, 2001, 26(1 –10): 249–262. DOI: 10.1016/S0734-743X(01)00085-9. [84] NAKAMURA A, FUJIWARA A. Velocity distribution of fragments formed in a simulated collisional disruption [J]. Icarus, 1991, 92(1): 132–146. DOI: 10.1016/0019-1035(91)90040-Z. [85] HOCKNEY R W, EASTWOOD J W. Computer simulation using particles [M]. New York: McGraw-Hill, 1981. [86] HOCKNEY R W, EASTWOOD J W. Computer simulation using particles [M]. Boca Raton: CRC Press, 1988. [87] BENZ W. Smooth particle hydrodynamics: a review [C] // The Numerical Modelling of Nonlinear Stellar Pulsations. Dordrecht: NATO ASI Series, 1990: 269–288. DOI: 10.1007/978-94-009-0519-1_16. [88] BENZ W, ASPHAUG E. Impact simulations with fracture: I: method and tests [J]. Icarus, 1994, 107(1): 98–116. DOI: 10.1006/icar.1994.1009. [89] BENZ W, ASPHAUG E. Simulations of brittle solids using smooth particle hydrodynamics [J]. Computer Physics Communications, 1995, 87(1–2): 253–265. DOI: 10.1016/0010-4655(94)00176-3. [90] 徐金中, 汤文辉, 徐志宏. 超高速碰撞碎片云特征的SPH方法数值分析 [J]. 高压物理学报, 2008, 22(4): 377–383. DOI: 10.11858/gywlxb.2008.04.007.XU J Z, TANG W H, XU Z H. Numerical analysis of the characteristics of debris clouds produced by hypervelocity impacts using SPH method [J]. Chinese Journal of High Pressure Physics, 2008, 22(4): 377–383. DOI: 10.11858/gywlxb.2008.04.007. [91] LIANG S C, LI Y, CHEN H, et al. Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set [J]. International Journal of Impact Engineering, 2013, 56: 27–31. DOI: 10.1016/j.ijimpeng.2012.07.004. [92] SAKONG J, WOO S C, KIM T W. Determination of impact fragments from particle analysis via smoothed particle hydrodynamics and k-means clustering [J]. International Journal of Impact Engineering, 2019, 134: 103387. DOI: 10.1016/j.ijimpeng.2019.103387. [93] ZHANG X T, JIA G H, HUANG H. Fragment identification and statistics method of hypervelocity impact SPH simulation [J]. Chinese Journal of Aeronautics, 2011, 24: 18–24. DOI: 10.1016/S1000-9361(11)60003-4. [94] 张晓天, 贾光辉, 黄海. 基于 FE 重构方法的冲击破碎仿真 [J]. 计算力学学报, 2011, 28(5): 792–797. DOI: 10.7511/jslx201105024.ZHANG X T, JIA G H, HUANG H. Combination of FE and SPH method for impact fragmentation [J]. Chinese Journal of Computational Mechanics, 2011, 28(5): 792–797. DOI: 10.7511/jslx201105024. [95] ZHANG X T, JIA G H, HUANG H. Finite element reconstruction approach for on-orbit spacecraft breakup dynamics simulation and fragment analysis [J]. Advances in Space Research, 2013, 51(3): 423–433. DOI: 10.1016/j.asr.2012.09.023. [96] 张晓天, 贾光辉, 黄海. 基于超高速碰撞仿真的卫星碰撞解体碎片分析 [J]. 航空学报, 2011, 32(7): 1224–1230. DOI: CNKI:11-1929/V.20110330.1305.004.ZHANG X T, JIA G H, HUANG H. Debris analysis of on-orbit satellite collision based on hypervelocity impact simulation [J]. Acta Aeronautica Astronautica Sinica, 2011, 32(7): 1224–1230. DOI: CNKI:11-1929/V.20110330.1305.004. [97] ATTAAWAY S W, HEINSTEIN M W, SWEGLE J W. Coupling of smooth particle hydrodynamics with the finite element method [J]. Nuclear Engineering and Design, 1994, 150(2–3): 199–205. DOI: 10.1016/0029-5493(94)90136-8. [98] VUYST TD, VIGNJEVIC R, CAMPBELL J C. Coupling between meshless and finite element methods [J]. International Journal of Impact Engineering, 2005, 31(8): 1054–1064. DOI: 10.1016/j.ijimpeng.2004.04.017. [99] JOHNSON G R. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations [J]. Nuclear Engineering and Design, 1994, 150(2–3): 265–274. DOI: 10.1016/0029-5493(94)90143-0. [100] 冷冰林, 许金余, 邵宁, 等. 刚性弹丸侵彻金属靶体的 FEM-SPH 耦合计算 [J]. 弹箭与制导学报, 2008, 28(5): 105–108. DOI: 10.3969/j.issn.1673-9728.2008.05.032.LENG B L, XU J Y, SHAO N, et al. Computation of steel penetrated by rigid projectile with coupled FEM-SPH methods [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(5): 105–108. DOI: 10.3969/j.issn.1673-9728.2008.05.032. [101] 肖毅华, 胡德安, 韩旭, 等. 一种自适应轴对称FEM-SPH耦合算法及其在高速冲击模拟中的应用 [J]. 爆炸与冲击, 2012, 32(4): 51–59. DOI: 10.11883/1001-1455(2012)04-0384-09.XIAO Y H, HU D A, HAN X, et al. An adaptive axisymmetric FEM-SPH coupling algorithm and its application to high velocity impact simulation [J]. Explosion and Shock Waves, 2012, 32(4): 51–59. DOI: 10.11883/1001-1455(2012)04-0384-09. [102] 纪冲, 龙源, 方向. 基于FEM-SPH耦合法的弹丸侵彻钢纤维混凝土数值模拟 [J]. 振动与冲击, 2010, 29(7): 69–74. DOI: 10.3969/j.issn.1000-3835.2010.07.015.JI C, LONG Y, FANG X. Numerical simulation for projectile penetrating steel fiber reinforced concrete with FEM-SPH coupling algorithm [J]. Journal of Vibration and Shock, 2010, 29(7): 69–74. DOI: 10.3969/j.issn.1000-3835.2010.07.015. [103] 武玉玉, 何远航, 李金柱. 耦合方法在超高速碰撞数值模拟中的应用 [J]. 高压物理学报, 2005, 19(4): 385–389. DOI: 10.11858/gywlxb.2005.04.019.WU Y Y, HE Y H, LI J Z. Application of the coupling method in simulating the hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 385–389. DOI: 10.11858/gywlxb.2005.04.019. [104] 何远航, 武玉玉, 张庆明. 碰撞倾角对碎片云分布影响的数值模拟 [J]. 北京理工大学学报, 2007, 27(10): 851–854. DOI: 10.3969/j.issn.1001-0645.2007.10.002.HE Y H, WU Y Y, ZHANG Q M. Numerical simulation for the influence of impact angle on debris clouds distribution [J]. Transactions of Beijing Institute of Technology, 2007, 27(10): 851–854. DOI: 10.3969/j.issn.1001-0645.2007.10.002. [105] SAKONG J, WOO S C, KIM J Y, et al. Study on material fracture and debris dispersion behavior via high velocity impact [J]. Transactions of the Korean Society of Mechanical Engineers A, 2017, 41(11): 1065–1075. DOI: 10.3795/KSME-A.2017.41.11.1065. [106] BECKER M, SEIDL M, MEHL M, et al. Numerical and experimental investigation of SPH, SPG, and FEM for high-velocity impact applications [C]// The 12th European LS-DYNA Conference. Koblenz: DYNAmore GmbH, 2019. [107] JOHNSON G R, BEISSEL S R, STRYK R A. An improved generalized particle algorithm that includes boundaries and interfaces [J]. International Journal for Numerical Methods in Engineering, 2002, 53(4): 875–904. DOI: 10.1002/nme.316. [108] JOHNSON G R, STRYK R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation [J]. International Journal of Impact Engineering, 2003, 28(9): 947–966. DOI: 10.1016/S0734-743X(03)00012-5. [109] JOHNSON G R. Numerical algorithms and material models for high-velocity impact computations [J]. International Journal of Impact Engineering, 2011, 38(6): 456–472. DOI: 10.1016/j.ijimpeng.2010.10.017. [110] JOHNSON G R, STRYK R A, BEISSEL S R, et al. An algorithm to automatically convert distorted finite elements into meshless particles during dynamic deformation [J]. International Journal of Impact Engineering, 2002, 27(10): 997–1013. DOI: 10.1016/S0734-743X(02)00030-1. [111] BEISSEL S R, GERLACH C A, JOHNSON G R. Hypervelocity impact computations with finite elements and meshfree particles [J]. International Journal of Impact Engineering, 2006, 33(1–12): 80–90. DOI: 10.1016/j.ijimpeng.2006.09.047. [112] BEISSEL S R, GERLACH C A, JOHNSON G R. A quantitative analysis of computed hypervelocity debris clouds [J]. Cement Technology, 2008, 35(12): 1410–1418. DOI: 10.1016/j.ijimpeng.2008.07.059. [113] JOHNSON G R, BEISSEL S R, GERLACH C A. A 3D combined particle-element method for intense impulsive loading computations involving severe distortions [J]. International Journal of Impact Engineering, 2015, 84: 171–180. DOI: 10.1016/j.ijimpeng.2015.06.006. [114] JOHNSON G R, BEISSEL S R, STRYK R A. A generalized particle algorithm for high velocity impact computations [J]. Computational Mechanics, 2000, 25: 245–256. DOI: 10.1007/s004660050473. [115] GERLACH C A, JOHNSON G R. A contact and sliding interface algorithm for the combined particle-element method [J]. International Journal of Impact Engineering, 2018, 113: 21–28. DOI: 10.1016/j.ijimpeng.2017.11.003. [116] SAUER M. Adaptive kopplung des netzfreien SPH-verfahrens mit finiten elementen zur berechnung von impaktvorgängen [D]. Munich: Universität der Bundeswehr München, 2000. [117] 王吉, 王肖钧, 卞梁. 光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用 [J]. 爆炸与冲击, 2007, 27(6): 44–50. DOI: 10.11883/1001-1455(2007)06-0522-07.WANG J, WANG X J, BIAN L. Linking of smoothed particle hydronamics method to standard finite element method and its application in impact dynamics [J]. Explosion and Shock Waves, 2007, 27(6): 44–50. DOI: 10.11883/1001-1455(2007)06-0522-07. [118] 张志春, 强洪夫, 高巍然. 一种新型SPH-FEM耦合算法及其在冲击动力学问题中的应用 [J]. 爆炸与冲击, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.ZHANG Z C, QIANG H F, GAO W R. A new coupled SPH-FEM algorithm and its application to impact dynamics [J]. Explosion and Shock Waves, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07. [119] HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. DOI: 10.1016/j.actaastro.2020.05.056. [120] PIEKUTOWSKI A J. Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates [J]. International Journal of Impact Engineering, 1993, 14(1–4): 573–586. DOI: 10.1016/0734-743X(93)90053-A. [121] PIEKUTOWSKI A J. Fragmentation initiation threshold for spheres impacting at hypervelocity [J]. International Journal of Impact Engineering, 2003, 29(1–10): 563–574. DOI: 10.1016/j.ijimpeng.2003.10.005. [122] HE Y, BAYLY A E, HASSANPOUR A, et al. A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces [J]. Powder Technology, 2018, 338: 548–562. DOI: 10.1016/j.powtec.2018.07.043. [123] ZAITSEV Y B, WITTMANN F H. Simulation of crack propagation and failure of concrete [J]. Matériaux et Construction, 1981, 14: 357–365. DOI: 10.1007/BF02478729. [124] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997. [125] SANTOSA S, WIERZBICKI T. On the modeling of crush behavior of a closed-cell aluminum foam structure [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(4): 645–669. DOI: 10.1016/S0022-5096(97)00082-3. [126] LI K, GAO X L, ROY A K. Micromechanics model for three-dimensional open-cell foams using a tetrakaidecahedral unit cell and Castigliano’s second theorem [J]. Composites Science and Technology, 2003, 63(12): 1769–1781. DOI: 10.1016/S0266-3538(03)00117-9. [127] CHEON S S, MEGUID S A. Crush behavior of metallic foams for passenger car design [J]. International Journal of Automotive Technology, 2004, 5(1): 17–22. DOI: 10.1109/TVT.2004.823505. [128] TUNVIR K, KIM A, CHEON S. Analytical solution for crushing behavior of closed cell al-alloy foam [J]. Mechanics of Advanced Materials and Structures, 2007, 14: 321–327. DOI: 10.1080/15376490600845660. [129] 冯阳, 梁增友, 吴鸿超, 等. 基于渗流法的泡沫铝细观结构模型研究 [J]. 中北大学学报(自然科学版), 2016, 37(1): 90–96. DOI: 10.3969/j.issn.1673-3193.2016.01.017.FENG Y, LIANG Z Y, WU H C, et al. Research on micro structural model of open-cell aluminum foam based on infiltration casting methods [J]. Journal of North University of China (Natural Science Edition), 2016, 37(1): 90–96. DOI: 10.3969/j.issn.1673-3193.2016.01.017. [130] LI L, XUE P, CHEN Y, et al. Insight into cell size effects on quasi-static and dynamic compressive properties of 3D foams [J]. Materials Science & Engineering A, 2015, 636: 60–69. DOI: 10.1016/j.msea.2015.03.052. [131] TEKOĞLU C, GIBSON L, PARDOEN T, et al. Size effects in foams: experiments and modeling [J]. Progress in Materials Science, 2011, 56(2): 109–138. DOI: 10.1016/j.pmatsci.2010.06.001. [132] 王长峰, 郑志军, 虞吉林. 泡沫杆撞击刚性壁的动态压溃模型 [J]. 爆炸与冲击, 2013, 33(6): 587–593. DOI: 10.11883/1001-1455(2013)06-0587-07.WANG C F, ZHENG Z J, YU J L. Dynamic crushing models for a foam rod striking a rigid wall [J]. Explosion and Shock Waves, 2013, 33(6): 587–593. DOI: 10.11883/1001-1455(2013)06-0587-07. [133] LI Z Q, ZHANG J J, FAN J H, et al. On crushing response of the three-dimensional closed-cell foam based on Voronoi model [J]. Mechanics of Materials, 2014, 68: 85–94. DOI: 10.1016/j.mechmat.2013.08.009. [134] TANG L Q, SHI X P, ZHANG L, et al. Effects of statistics of cell’s size and shape irregularity on mechanical properties of 2D and 3D Voronoi foams [J]. Acta Mechanica, 2014, 225: 1361–1372. DOI: 10.1007/s00707-013-1054-4. [135] ZHANG X T, WANG R Q, LIU J X, et al. A numerical method for the ballistic performance prediction of the sandwiched open cell aluminum foam under hypervelocity impact [J]. Aerospace Science and Technology, 2018, 75: 254–260. DOI: 10.1016/j.ast.2017.12.034. [136] WEJRZANOWSKI T, SKIBINSKI J, SZUMBARSKI J, et al. Structure of foams modeled by Laguerre–Voronoi tessellations [J]. Computational Materials Science, 2013, 67: 216–221. DOI: 10.1016/j.commatsci.2012.08.046. [137] FAN Z G, WU Y G, ZHAO X H, et al. Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres [J]. Computational materials science, 2004, 29(3): 301–308. DOI: 10.1016/j.commatsci.2003.10.006. [138] REDENBACH C. Microstructure models for cellular materials [J]. Computational Materials Science, 2009, 44(4): 1397–1407. DOI: 10.1016/j.commatsci.2008.09.018. [139] FANG Q, ZHANG J H, ZHANG Y D, et al. A 3D mesoscopic model for the closed-cell metallic foams subjected to static and dynamic loadings [J]. International Journal of Impact Engineering, 2015, 82: 103–112. DOI: 10.1016/j.ijimpeng.2014.10.009. [140] FANG Q, ZHANG J H, ZHANG Y D, et al. Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact [J]. Composite Structures, 2015, 124: 409–420. DOI: 10.1016/j.compstruct.2015.01.001. [141] ZHENG Z J, WANG C F, YU J L, et al. Dynamic stress-strain states for metal foams using a 3D cellular model [J]. Journal of the Mechanics and Physics of Solids, 2014, 72: 93–114. DOI: 10.1016/j.jmps.2014.07.013. [142] ZHANG C Y, TANG L Q, YANG B, et al. Meso-mechanical study of collapse and fracture behaviors of closed-cell metallic foams [J]. Computational Materials Science, 2013, 79: 45–51. DOI: 10.1016/j.commatsci.2013.05.046. [143] GREENBERGER M. An a priori determination of serial correlation in computer generated random numbers [J]. Mathematics of Computation, 1961, 15(76): 383–389. DOI: 10.1090/S0025-5718-1961-0144489-8. [144] FANG Q, ZHANG J H, CHEN L, et al. An algorithm for the grain-level modelling of a dry sand particulate system [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(5): 055021. DOI: 10.1088/0965-0393/22/5/055021. [145] MAIRE E, FAZEKAS A, SALVO L, et al. X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems [J]. Composites Science and Technology, 2003, 63(16): 2431–2443. DOI: 10.1016/S0266-3538(03)00276-8. [146] MCDONALD S A, MUMMERY P M, JOHNSON G, et al. Characterization of the three-dimensional structure of a metallic foam during compressive deformation [J]. Journal of Microscopy, 2006, 223(2): 150–158. DOI: 10.1111/j.1365-2818.2006.01607.x. [147] JEON I, ASAHINA T, KANG K-J, et al. Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography [J]. Mechanics of Materials, 2010, 42(3): 227–236. DOI: 10.1016/j.mechmat.2010.01.003. [148] SAENGER E H, URIBE D, JÄNICKE R, et al. Digital material laboratory: wave propagation effects in open-cell aluminium foams [J]. International Journal of Engineering Science, 2012, 58: 115–123. DOI: 10.1016/j.ijengsci.2012.03.030. [149] 陈鹏. 泡沫铝夹芯结构力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.CHEN P. Research on mechanical properties of aluminum foam sandwich structure [D]. Harbin: Harbin Institute of Technology, 2013. [150] SUN Y L, LI Q M, LOWE T, et al. Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling [J]. Materials and Design, 2016, 89: 215–224. DOI: 10.1016/j.matdes.2015.09.109. [151] 程振, 方秦, 张锦华, 等. 闭孔泡沫金属三维细观模型建模方法 [J]. 工程力学, 2017, 34(8): 212–221. DOI: 10.6052/j.issn.1000-4750.2016.02.0098.CHENG Z, FANG Q, ZHANG J H, et al. Mesoscopic methodology for the three-dimensional modelling of closed-cell metallic foam [J]. Engineering Mechanics, 2017, 34(8): 212–221. DOI: 10.6052/j.issn.1000-4750.2016.02.0098. [152] 李侯贞强, 张亚栋, 张锦华, 等. 基于CT的泡沫铝三维细观模型重建及应用 [J]. 北京航空航天大学学报, 2018, 44(1): 160–168. DOI: 10.13700/j.bh.1001-5965.2016.0959.LI H Z Q, ZHANG Y D, ZHANG J H, et al. Reconstruction and application of three-dimensional mesoscopic model of aluminum foam based on CT [J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 160–168. DOI: 10.13700/j.bh.1001-5965.2016.0959. -