CoCrFeNiAlx系高熵合金的动态力学性能和本构关系

马胜国 王志华

马胜国, 王志华. CoCrFeNiAlx系高熵合金的动态力学性能和本构关系[J]. 爆炸与冲击, 2021, 41(11): 111101. doi: 10.11883/bzycj-2020-0293
引用本文: 马胜国, 王志华. CoCrFeNiAlx系高熵合金的动态力学性能和本构关系[J]. 爆炸与冲击, 2021, 41(11): 111101. doi: 10.11883/bzycj-2020-0293
MA Shengguo, WANG Zhihua. Dynamic mechanical properties and constitutive relations of CoCrFeNiAlx high entropy alloys[J]. Explosion And Shock Waves, 2021, 41(11): 111101. doi: 10.11883/bzycj-2020-0293
Citation: MA Shengguo, WANG Zhihua. Dynamic mechanical properties and constitutive relations of CoCrFeNiAlx high entropy alloys[J]. Explosion And Shock Waves, 2021, 41(11): 111101. doi: 10.11883/bzycj-2020-0293

CoCrFeNiAlx系高熵合金的动态力学性能和本构关系

doi: 10.11883/bzycj-2020-0293
基金项目: 国家自然科学基金(51501123, 11390362);山西省“1331工程”重点创新团队建设计划。
详细信息
    作者简介:

    马胜国(1983- ),男,博士,副教授,mashengguo.cumt@163.com

    通讯作者:

    王志华(1977- ),男,博士,教授,wangzh077@163.com

  • 中图分类号: O347;TG146.4

Dynamic mechanical properties and constitutive relations of CoCrFeNiAlx high entropy alloys

  • 摘要: 高熵合金,以其独特的合金设计和优异的综合性能,成为当下材料研究的热点。本文利用高真空电弧熔炼法成功制备出了CoCrFeNiAlxx=0, 0.6, 1)系高熵合金,并通过分离式霍普金森压杆对其进行一系列不同应变速率下的动态压缩试验。通过X射线、扫描电镜和透射电镜分析,深入探索了该合金系的晶体结构、微观组织和变形特征。最后,利用修正后的Johnson-Cook (J-C)本构模型,获得了该体系高熵合金的动态本构关系。
  • 图  1  CoCrFeNiAlx系高熵合金的XRD图谱

    Figure  1.  XRD patterns of CoCrFeNiAlx high-entropy alloys

    图  2  CoCrFeNiAlx系高熵合金的微观组织SEM图

    Figure  2.  SEM images of CoCrFeNiAlx high-entropy alloys

    图  3  CoCrFeNiAlx系高熵合金在不同应变速率下的工程应力-应变曲线

    Figure  3.  Engineering stress-strain curves of CoCrFeNiAlx high-entropy alloys at various strain rates

    图  4  CoCrFeNiAlx系高熵合金在两种不同区域下的屈服强度应变率敏感性

    Figure  4.  Strain-rate sensitivity of yield strength at two regions for CoCrFeNiAlx high-entropy alloys

    图  5  CoCrFeNiAlx系高熵合金的动态流变应力与相应J-C模型

    Figure  5.  Comparison between dynamic flow stresses and the J-C model of CoCrFeNiAlx high-entropy alloys

    图  6  CoCrFeNi高熵合金在应变速率为1×10−4 s−1下的TEM图

    Figure  6.  TEM images of the CoCrFeNi high-entropy alloy at the strain rate of 1×10−4 s−1

    图  7  CoCrFeNi高熵合金在应变速率为2800 s−1下的TEM图

    Figure  7.  TEM images of the CoCrFeNi high-entropy alloy at the strain rate of 2800 s−1

    图  8  CoCrFeNiAl0.6高熵合金在应变速率为1×10−4 s−1和3 600 s−1下的TEM图[19]

    Figure  8.  TEM images of the CoCrFeNiAl0.6 high-entropy alloy at the strain rates of 1×10−4 s−1 and 3 600 s−1

    图  9  CoCrFeNiAl高熵合金在不同应变速率下的TEM图[25]

    Figure  9.  TEM images of the CoCrFeNiAl high-entropy alloy at different strain rates[25]

    表  1  3种高熵合金在2种加载方式下的强化机制比较

    Table  1.   Comparison of strengthening mechanisms for the three HEAs under two loading conditions

    合金相组成强化机制(低应变速率)强化方式(高应变速率)
    Al0FCC位错+孪晶,具有TWIP效应位错+孪晶,具有TWIP效应
    Al0.6FCC位错位错+孪晶,具有TWIP效应
    BCC位错位错
    Al1BCC位错位错
    下载: 导出CSV
  • [1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299–303. DOI: 10.1002/adem.200300567.
    [2] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering A, 2004, 375−377: 213–218. DOI: 10.1016/j.msea.2003.10.257.
    [3] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys [J]. Progress in Materials Science, 2014, 61(8): 1–93. DOI: 10.1016/j.pmatsci.2013.10.001.
    [4] LI Z Z, ZHAO S T, RITCHIE R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Progress in Materials Science, 2019, 102: 296–345. DOI: 10.1016/j.pmatsci.2018.12.003.
    [5] 张勇, 陈明彪, 杨潇. 先进高熵合金技术 [M]. 北京: 化学工业出版社, 2019.
    [6] SHAHMIR H, HE J Y, LU Z P, KAWASAKI M, et al. Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion [J]. Materials Science and Engineering A, 2017, 685: 342–348. DOI: 10.1016/j.msea.2017.01.016.
    [7] SONI V, SENKOV O N, GWALANI B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy [J]. Scientific Reports, 2018, 8: 8816. DOI: 10.1038/s41598-018-27144-3.
    [8] LIU J P, GUO X X, LIN Q Y, et al. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures [J]. Science China Materials, 2019, 62: 853–863. DOI: 10.1007/s40843-018-9373-y.
    [9] ZHAO D, FANG H Q, JIN T, et al. Constitutive modeling and strain hardening of CoCrFeNiAl x high-entropy alloys [J]. Materials Research Express, 2019, 6: 1065h3. DOI: 10.1088/2053-1591/ab42e8.
    [10] CHEN C L, SUPRIANTO. Microstructure and mechanical properties of AlCuNiFeCr high entropy alloy coatings by mechanical alloying [J]. Surface and Coating Technology, 2020, 386: 125443. DOI: 10.1016/j.surfcoat.2020.125443.
    [11] VARVENNE C, CURTIN W A. Strengthening of high entropy alloys by dilute solute additions: CoCrFeNiAl x and CoCrFeNiMnAl x alloys [J]. Scripta Materialia, 2017, 138: 92–95. DOI: 10.1016/j.scriptamat.2017.05.035.
    [12] LI D Y, ZHANG Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures [J]. Intermetallics, 2016, 70: 24–28. DOI: 10.1016/j.intermet.2015.11.002.
    [13] LI Z, ZHAO S, DIAO H, et al. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: remarkable resistance to shear failure [J]. Scientific Reports, 2017, 7: 42742. DOI: 10.1038/srep42742.
    [14] ZHANG T W, JIAO Z M, WANG Z H, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy [J]. Scripta Materialia, 2017, 136: 15–19. DOI: 10.1016/j.scriptamat.2017.03.039.
    [15] 郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系 [J]. 爆炸与冲击, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.

    GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
    [16] 郭鹏程, 李键, 曹淑芬, 等. 大应变率范围内AM80镁合金的变形行为及组织演变 [J]. 爆炸与冲击, 2018, 38(3): 586–595. DOI: 10.11883/bzycj-2016-0266.

    GUO P C, Li J, CAO S F, et al. Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range [J]. Explosion and Shock Waves, 2018, 38(3): 586–595. DOI: 10.11883/bzycj-2016-0266.
    [17] TAKEUCHI A, INOUE A. Classification of Bulk Metallic Glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transactions, 2005, 46(12): 2817–2829. DOI: 10.2320/matertrans.46.2817.
    [18] 唐长国, 朱金华, 周惠久. 金属材料屈服强度的应变率效应和热激活理论 [J]. 金属学报, 1995, 31(6): 248–253.

    TANG C G, ZHU J H, ZHOU H J. Correlation between yield stress and strain rate for metallic materials and thermal activation approach [J]. Acta Metallurgica Sinica, 1995, 31(6): 248–253.
    [19] WANG L, QIAO J W, MA S G, et al. Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading [J]. Materials Science and Engineering A, 2018, 727: 208–213. DOI: 10.1016/j.msea.2018.05.001.
    [20] DODD B, BAI Y. Adiabatic shear localization: frontiers and advances [M]. Amsterdam: Elsevier, 2012.
    [21] ZENER C, HOLLOMN J H. Effect of Strain Rate upon Plastic Flow of Steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. DOI: 10.1063/1.1707363.
    [22] 王璐. CoCrFeNiAlx系高熵合金的动态力学特性 [D]. 太原, 太原理工大学, 2018.
    [23] ZHU L, KOU H, LU J. On the role of hierarchical twins for achieving maximum yield strength in nanotwinned metals [J]. Applied Physics Letters, 2012, 101(8): 081906–081910. DOI: 10.1063/1.4747333.
    [24] CAO T, SHANG J, ZHAO J, et al. The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys [J]. Materials Letters, 2016, 164: 344–347. DOI: 10.1016/j.matlet.2015.11.016.
    [25] 王璐, 马胜国, 赵聃, 等. AlCoCrFeNi高熵合金在冲击载荷下的动态力学性能 [J]. 热加工工艺, 2018, 47(24): 86–89. DOI: 10.14158/j.cnki.1001-3814.2018.24.021.

    WANG L, MA S G, ZHAO D, et al. Dynamic mechanical properties of AlCoCrFeNi high-entropy alloys under impact load [J]. Hot Working Technology, 2018, 47(24): 86–89. DOI: 10.14158/j.cnki.1001-3814.2018.24.021.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  824
  • HTML全文浏览量:  457
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2021-03-01
  • 网络出版日期:  2021-10-25
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回