石化装置工业尺度管道爆轰传播实验研究

鲍磊 王鹏 党茜 李厚达 邝辰 于安峰

鲍磊, 王鹏, 党茜, 李厚达, 邝辰, 于安峰. 石化装置工业尺度管道爆轰传播实验研究[J]. 爆炸与冲击, 2021, 41(9): 095401. doi: 10.11883/bzycj-2020-0295
引用本文: 鲍磊, 王鹏, 党茜, 李厚达, 邝辰, 于安峰. 石化装置工业尺度管道爆轰传播实验研究[J]. 爆炸与冲击, 2021, 41(9): 095401. doi: 10.11883/bzycj-2020-0295
BAO Lei, WANG Peng,, DANG Qian, LI Houda, KUANG Chen, YU Anfeng. Experimental study on detonation propagation in industrial scale pipelines used in petrochemical plants[J]. Explosion And Shock Waves, 2021, 41(9): 095401. doi: 10.11883/bzycj-2020-0295
Citation: BAO Lei, WANG Peng,, DANG Qian, LI Houda, KUANG Chen, YU Anfeng. Experimental study on detonation propagation in industrial scale pipelines used in petrochemical plants[J]. Explosion And Shock Waves, 2021, 41(9): 095401. doi: 10.11883/bzycj-2020-0295

石化装置工业尺度管道爆轰传播实验研究

doi: 10.11883/bzycj-2020-0295
详细信息
    作者简介:

    鲍 磊(1987- ),男,硕士,工程师,baol.qday@sinopec.com

    通讯作者:

    于安峰(1982- ),男,博士,教授级高级工程师,yuaf.qday@sinopec.com

  • 中图分类号: O381

Experimental study on detonation propagation in industrial scale pipelines used in petrochemical plants

  • 摘要: 针对石化装置罐区大口径、长距离管道内火焰传播缺乏系统研究的问题,设计搭建了DN50~DN500工业尺度管道火焰传播实验装置,并开展了丙烷/空气、乙烯/空气等可燃气体在不同管径下的实验研究。实验结果表明:可燃气体积分数对火焰传播及爆轰有一定影响,当接近化学计量浓度时,爆轰加速距离更短,更易形成稳态爆轰,而当可燃气混合气为贫燃或富燃状况时,爆轰加速距离则会增长;火焰爆轰传播速度、爆轰压力与管道管径基本无关,受可燃气种类影响更大;对应体积分数为6.6%的乙烯/空气和体积分数为4.2%的丙烷/空气混合气体,爆轰压力分别是初始压力的15.17和14.47倍,DN150以下管径内的爆轰压力远高于ISO16852标准给出的参考值。罐区连通管道阻火器选型安装时,应结合安装位置选用合适的阻火器。
  • 图  1  实验系统组成

    Figure  1.  Schematic representation of the experimental apparatus

    图  2  不同C2H4体积分数下C2H4/空气爆轰传播压力

    Figure  2.  Detonation pressure of different C2H4 concentrations in air

    图  3  不同C2H4体积分数下C2H4/空气混合物爆轰传播速度

    Figure  3.  Detonation flame speed of different C2H4 concentrations in air

    图  4  不同管径下管道火焰爆轰速度

    Figure  4.  Detonation speed of different pipe diameters

    图  5  ISO16852标准关于爆轰速度的位置设置

    Figure  5.  Location settings of detonation speed in ISO16852

    图  6  爆轰火焰无量纲压力pm/p0值与管径关系(6.6% C2H4/空气)

    Figure  6.  Relationship between pm/p0 and pipe diameters (6.6% C2H4/air)

    图  7  不同管径下火焰${\delta _{\max }}$值(6.6% C2H4/空气)

    Figure  7.  ${\delta _{\max }}$ in different pipes (6.6% C2H4/air)

    图  8  50 mm管道不同位置处火焰速度(6.6% C2H4/空气)

    Figure  8.  Flame speed at different positions in 50 mm pipeline (6.6% C2H4/air)

    图  9  管径与爆轰火焰pm/p0关系(4.2%C3H8/空气)

    Figure  9.  Relationship between pm/p0 and pipe specifications (4.2%C3H8/Air)

    图  10  不同管径下火焰${\delta _{\max }}$值(4.2% C3H8/空气)

    Figure  10.  ${\delta _{\max }}$ in different pipes (4.2% C3H8/Air)

    表  1  各实验管道长度

    Table  1.   Length of each experimental pipeline

    管径/mm长度/m管径/mm长度/m
    501525055
    802430060
    1002540084
    15036500110
    20048
    下载: 导出CSV

    表  2  50 mm管道实验装置火焰速度传感器布置位置

    Table  2.   Location of flame speed sensors in 50-mm-pipeline experimental apparatus

    传感器位置/D传感器位置/D传感器位置/D
    v1144v5168v9208
    v2148v6176v10216
    v3152v7184v11224
    v4156v8192v12232
    下载: 导出CSV

    表  3  50 mm管道实验装置火焰压力传感器布置位置

    Table  3.   Location of flame pressure sensors in 50-mm-pipeline experimental apparatus

    传感器位置/D传感器位置/D
    p1146 p5180
    p2150 p6188
    p3154 p7212
    p4172 p8228
    下载: 导出CSV

    表  4  ISO16852标准的$p_{\rm m}/p_0 $参考值

    Table  4.   $p_{\rm m}/p_0 $ given by ISO16852

    介质D≤80 mm80 mm<D
    ≤150 mm
    150 mm<D
    <1 000 mm
    D≥1000 mm
    C3H8/空气10±212±2.414±2.816±3.2
    C2H4/空气10±212±2.414±2.816±3.2
    下载: 导出CSV
  • [1] 王鹏, 白永忠, 党文义, 等. 储罐VOCs安全收集零排放装置: CN110143376B [P]. 2018-02-13.
    [2] PROUST C. Gas flame acceleration in long ducts [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 387–393. DOI: 10.1016/j.jlp.2015.04.001.
    [3] WANG L Q, MA H H, SHEN Z W, et al. Effects of bluff bodies on the propagation behaviors of gaseous detonation [J]. Combustion & Flame, 2019, 201: 118–128.
    [4] CICCARELLI G, DOROFEEV S. Flame acceleration and transition to detonation in ducts [J]. Progress in Energy and Combustion Science, 2008, 34(4): 499–550. DOI: 10.1016/j.pecs.2007.11.002.
    [5] 周凯元, 李宗芬. 丙烷-空气爆燃波的火焰面在直管道中的加速运动 [J]. 爆炸与冲击, 2000, 20(2): 137–142.

    ZHOU K Y, LI Z F. Flame front acceleration of propane-air deflagration in straight tubes [J]. Explosion and shock waves., 2000, 20(2): 137–142.
    [6] CICCARELLI G, WANG Z, LU J, et al. Effect of orifice plate spacing on detonation propagation [J]. Journal of Loss Prevention in the Process Industries, 2017, 49(9): 739–744. DOI: 10.1016/j.jlp.2017.03.014.
    [7] 周宁, 王文秀, 张国文, 等. 障碍物对丙烷-空气爆炸火焰加速的影响 [J]. 爆炸与冲击, 2018, 38(5): 1106–1114. DOI: 10.11883/bzycj-2017-0049.

    ZHOU N, WANG W X, ZHANG G W, et al. Effect of obstacles on flame acceleration of propane-air explosion [J]. Explosion and Shock Waves., 2018, 38(5): 1106–1114. DOI: 10.11883/bzycj-2017-0049.
    [8] ZHANG B. The influence of wall roughness on detonation limits in hydrogen–oxygen mixture [J]. Combustion and Flame, 2016, 169(7): 333–339. DOI: 10.1016/j.combustflame.2016.05.003.
    [9] 司荣军. 管道内瓦斯爆炸传播试验研究 [J]. 煤炭科学技术, 2009, 37(2): 47–50.

    SI R J. Test and research on gas explosion transmission in pipeline [J]. Coal Science and Technology, 2009, 37(2): 47–50.
    [10] ZURAIJI A A, ZANGANEH J, MOGHTADERI B. Application of flame arrester in mitigation of explosion and flame deflagration of ventilation air methane [J]. Fuel, 2019, 257(1): 115985. DOI: 10.1016/j.fuel.2019.115985.
    [11] LIU Q M, BAI C H, LI X D, et al. Coal dust/air explosions in a large-scale tube [J]. Fuel, 2010, 89(2): 329–335. DOI: 10.1016/j.fuel.2009.07.010.
    [12] 蒋新生, 谢威, 赵亚东, 等. 不同长径比的狭长管道油气爆炸实验 [J]. 油气储运, 2020, 39(8): 879–884.

    JIANG X S, XIE W, ZHAO Y D, et al. Experimental study on gasoline air mixture explosion using long-narrow pipes with different aspect ratios of oil storage and transportation engineering [J]. Oil & Gas Storage and Transportation., 2020, 39(8): 879–884.
    [13] 孙少辰, 毕明树, 刘刚, 等. 爆轰火焰在管道阻火器内的传播与淬熄特征 [J]. 化工学报, 2016, 67(5): 2176–2184.

    SUN S C, BI M S, LIU G, et al. Detonation flame propagation and quenching characteristics in crimped-ribbon flame arrester [J]. Journal of Chemical Industry and Engineering, 2016, 67(5): 2176–2184.
    [14] ISO/TC 21Equipment for fire protection and fire fighting: ISO16852:2016 [S/OL]. 2016.
    [15] 夏昌敬, 周凯元, 沈兆武. 初始条件影响气体非稳态爆轰波在弯管中传播特性的实验研究 [J]. 中国科学技术大学学报, 2004(1): 95–100.

    XIA C J, ZHOU K Y, SHEN Z W. Experimental study on effects of initial conditions for propagation characteristics of unsteady gaseous detonation in channels with a bend [J]. Journal of University of Science and Technology of China., 2004(1): 95–100.
    [16] BSI Standards. Guide for the selection, application and use of flame arresters: CEN16793 [S]. 2016.
    [17] KERSTEN C, FORSTER H. Investigation of deflagrations and detonations in pipes and flame arresters by high-speed framing [J]. Journal of Loss Prevention in the Process Industries, 2004, 17: 43–50. DOI: 10.1016/j.jlp.2003.09.004.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  187
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-28
  • 修回日期:  2020-12-24
  • 网络出版日期:  2021-08-23
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回