超高速撞击下波阻抗梯度防护结构碎片云特性研究

宋光明 李明 武强 龚自正 张品亮 曹燕

宋光明, 李明, 武强, 龚自正, 张品亮, 曹燕. 超高速撞击下波阻抗梯度防护结构碎片云特性研究[J]. 爆炸与冲击, 2021, 41(2): 021405. doi: 10.11883/bzycj-2020-0299
引用本文: 宋光明, 李明, 武强, 龚自正, 张品亮, 曹燕. 超高速撞击下波阻抗梯度防护结构碎片云特性研究[J]. 爆炸与冲击, 2021, 41(2): 021405. doi: 10.11883/bzycj-2020-0299
SONG Guangming, LI Ming, WU Qiang, GONG Zizheng, ZHANG Pinliang, CAO Yan. Debris cloud characteristics of graded-impedance shields under hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021405. doi: 10.11883/bzycj-2020-0299
Citation: SONG Guangming, LI Ming, WU Qiang, GONG Zizheng, ZHANG Pinliang, CAO Yan. Debris cloud characteristics of graded-impedance shields under hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021405. doi: 10.11883/bzycj-2020-0299

超高速撞击下波阻抗梯度防护结构碎片云特性研究

doi: 10.11883/bzycj-2020-0299
基金项目: 国家自然科学基金(11802034);国防科工局“十三五”碎片专项(KJSP2016030301);民用航天预研项目(D020304)
详细信息
    作者简介:

    宋光明(1987- ),男,博士,工程师,guangming.012@163.com

    通讯作者:

    李 明(1964- ),男,博士,研究员,liming_cast@sina.cn

  • 中图分类号: O389; V414.9

Debris cloud characteristics of graded-impedance shields under hypervelocity impact

  • 摘要: 碎片云特性是影响空间碎片防护结构防护性能的重要因素。通过实验对比了相同面密度波阻抗梯度材料、铝合金材料的碎片云特性,并借助数值模拟进行了更深入的研究,结果表明,当弹丸分别撞击波阻抗梯度材料、铝合金材料时,碎片云结构中弹丸的破碎特征明显不同。撞击波阻抗梯度材料时,弹丸头部破碎更加充分,弹丸侧向扩展程度提高;在高速段(6.5 km/s),受阻抗梯度及材料熔化效应的共同作用,波阻抗梯度材料碎片云头部出现分层现象。研究结果表明,超高速撞击波阻抗梯度材料碎片云特性的变化是其防护性能优于相同面密度铝合金的重要因素之一。
  • 图  1  波阻抗梯度材料样品(左)及横断面SEM图(右)

    Figure  1.  Sample of wave impedance gradient material (left) and SEM image of cross section (right)

    图  2  防护结构示意图

    Figure  2.  Schematic diagram of shield

    图  3  两种防护结构在三个速度点下的典型碎片云图像

    Figure  3.  Typical debris cloud images of two shields at three velocity points

    图  4  近似相同时刻(约28 μs)两种防护结构碎片云形貌示意图

    Figure  4.  Debris cloud morphologies of two shields at approximately the same time (about 28 μs)

    图  5  近似相同时刻(约20 μs)两种防护结构碎片云形貌示意图

    Figure  5.  Debris cloud morphologies of two shields at approximately the same time (about 20 μs)

    图  6  近似相同时刻(约15 μs)两种防护结构碎片云形貌示意图

    Figure  6.  Debris cloud morphologies of two shields at approximately the same time (about 15 μs)

    图  7  两种防护结构碎片云无量纲头部速度和弹丸碎片径向扩展速度随撞击速度变化规律

    Figure  7.  Variation of normalized head velocity and radial propagation velocity of projectile fragments with impact velocity for two shields

    图  8  相同工况条件下(5 km/s,20 μs时刻)两种防护结构数值模拟结果与实验结果对比

    Figure  8.  Comparison of numerical simulation and experimental results of two shields under the same conditions (5 km/s, 20 μs)

    图  9  两种防护结构碎片数量随速度变化规律曲线

    Figure  9.  Variation curve of debris quantity with velocity for two kinds of protective structures

    图  10  三种速度条件下两种防护结构碎片云质量分布

    Figure  10.  Mass distribution of debris cloud of two shields under three velocity conditions

    图  11  两种防护结构建模示意图

    Figure  11.  Modeling diagrams of two shields

    图  12  两种防护结构弹丸观察点冲击压力时间历史曲线

    Figure  12.  History curves of impact pressure at observation points of two shields

    图  13  6.5 km/s速度条件下2 μs时刻弹丸撞击两种防护结构示意图

    Figure  13.  Schematic diagrams of projectile impacting two shield at 2 μs under 6.5 km/s

    图  14  两种防护结构碎片云温度分布分析选取区域示意图

    Figure  14.  schematic diagram of temperature distribution of debris cloud of two protective structures

    图  15  两种防护结构所选区域碎片云温度分布曲线

    Figure  15.  Temperature distribution curves of debris cloud in the selected area for two shields

    表  1  波阻抗梯度材料结构参数

    Table  1.   Structural parameters of graded-impedance material

    等效厚度编号材料组成各层厚度/mm总厚度/mm
    1.5 mm铝合金TAMTi6Al4V0.31.8
    Al2024-T40.2
    AZ31B1.3
    下载: 导出CSV

    表  2  超高速撞击实验参数与结果

    Table  2.   Experimental parameters and results of hypervelocity impact

    实验编号缓冲屏材料撞击速度/(km·s−1弹丸直径/mm后墙损伤情况后墙失效与否
    shot 1-1TAM3.4404.25鼓包未失效
    shot 1-2TAM3.4734.51鼓包、穿孔、剥落失效
    shot 1-3Al3.5963.50鼓包未失效
    shot 1-4Al3.4804.00鼓包、临界穿孔、剥落、层裂失效
    shot 2-1TAM4.9514.99鼓包未失效
    shot 2-2TAM4.8195.24鼓包未失效
    shot 2-3TAM4.8275.25鼓包、穿孔失效
    shot 3-1TAM6.4006.00鼓包未失效
    shot 3-2TAM6.4126.27鼓包、剥落失效
    shot 3-3Al6.5184.50鼓包未失效
    shot 3-4Al6.4425.00穿孔、剥落、鼓包失效
    下载: 导出CSV

    表  3  材料的Tillotson状态方程参数

    Table  3.   Parameters of Tillotson state equations for titanium and aluminum

    材料A/GPaB/GPaab$ \alpha $$\ \beta$e0/(MJ·kg−1)e1/(MJ·kg−1)e2/(MJ·kg−1)
    TI6%AL4%V钛103500.50.6 557.03.512.5
    AL2024-T4铝 75650.51.63555.03.015.0
    下载: 导出CSV

    表  4  材料的Steinberg Guinan本构模型参数

    Table  4.   Parameters of Steinberg Guinan models for titanium and aluminum

    材料$ {Y}_{0} $/GPaYmax/GPabh$\ \beta$$ {G}_{0} $/GPa${T}_{\rm m}$/K
    TI6%AL4%V钛1.332.120.480.1 12 41.92110
    AL2024-T4铝0.290.681.860.185310.027.61220
    下载: 导出CSV

    表  5  AZ31B镁Puff状态方程参数

    Table  5.   Parameters of Puff state equation for AZ31B magnesium

    材料A1/GPaA2/GPaA3/GPaGrüneisen系数膨胀系数升华能/(MJ·kg−1)
    AZ31B镁103500.50.657.0
    下载: 导出CSV
  • [1] CHRISTIANSEN E L. Handbook for designing MMOD protection: NASA JSC-64399 [R]. 2009.
    [2] WILLIAMSEN J E, ROBINSON J H, NOLEN A M. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1): 217–228. DOI: 10.1016/0734-743X(95)99848-L.
    [3] DESTEFANIS R, SCHAEFER F, LAMBERT M, et al. Selecting enhanced space debris shields for manned spacecraft [J]. International Journal of Impact Engineering, 2006, 33(1): 219–230. DOI: 10.1016/j.ijimpeng.2006.09.065.
    [4] COUR-PALAIS B G, CREWS J L. A multi-shock concept for spacecraft shielding [J]. International Journal of Impact Engineering, 1990, 10: 135–146. DOI: 10.1016/0734-743X(90)90054-Y.
    [5] CHRISTIANSEN E L. Meteoroid/Debris shielding: TP-2003-210788 [R]. 2003.
    [6] MAIDEN C J, MCMILLAN A R. An investigation of the protection afforded a spacecraft by a thin shield [J]. AIAA Journal, 1964, 2(11): 1992–1998. DOI: 10.2514/3.2705.
    [7] 张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000.
    [8] PIEKUTOWSKI A J. Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates [J]. International Journal of Impact Engineering, 1993, 14(1): 573–546. DOI: 10.1016/0734-743X(93)90053-A.
    [9] PIEKUTOWSKI A J. Formation and description of debris cloud produced by hypervelocity impact: NASA CR-4707 [R]. 1996.
    [10] SWIFT H F, PREONAS D D, TURPIA W C, et al. Debris clouds behind plates impacted by hypervelocity pellets [J]. Journal of Spacecraft and Rockets, 1970, 7: 313–318. DOI: 10.2514/3.29926.
    [11] 唐蜜, 刘仓理, 李平, 等. 超高速撞击产生碎片云相分布数值模拟 [J]. 强激光与粒子束, 2012, 24(9): 2203–2206. DOI: 10.3788/HPLPB20122409.2203.

    TANG M, LIU C L, LI P, et al. Numerical simulation of phase distribution of debris cloud generated by hypervelocity impact [J]. High Power Laser and Particle Beams, 2012, 24(9): 2203–2206. DOI: 10.3788/HPLPB20122409.2203.
    [12] SWIFT H F, BAMFORD R, CHEN R. Designing space vehicle shields for meteoroid protection: a new analysis [J]. Advanced in Space Research, 1982, 2(12): 219–234. DOI: 10.1016/0273-1177(82)90311-8.
    [13] MERZHIEVSKY L A. Statistical characteristics of a debris cloud behind a shield [J]. International Journal of Impact Engineering, 1997, 20(6): 569–577. DOI: 10.1016/S0734-743X(97)87445-3.
    [14] PIEKUTOWSKI A J. A simple dynamic model for the formation of debris clouds [J]. International Journal of Impact Engineering, 1990, 10(1): 453–471. DOI: 10.1016/0734-743X(90)90079-B.
    [15] BLESS S. Bumper debris cloud structure estimated by shock calculation [J]. Journal de Physique Ⅳ Colloque, 1991, 1: 903–908. DOI: 10.1051/jp4:19913127.
    [16] HUANG J, MA Z X, REN L S, et al. A new engineering model of debris cloud produced by hypervelocity impact [J]. International Journal of Impact Engineering, 2013, 56: 32–39. DOI: 10.1016/j.ijimpeng.2012.07.003.
    [17] 侯明强, 龚自正, 杨继运, 等. 一种新概念密度梯度型高性能空间碎片防护结构 [C]// 2009年空间环境与材料科学论坛. 北京, 2009.
    [18] HOU M Q, GONG Z Z, ZHENG J D, et al. A new concept shield resisting hypervelocity impact [C]// The 29th Inter-Agency Space Debris Coordination Committee Meeting. Berlin, Germany, 2011.
    [19] 侯明强, 龚自正, 徐坤博, 等. 密度梯度薄板超高速撞击特性的实验研究 [J]. 物理学报, 2014, 63(2): 206–215. DOI: 10.7498/aps.63.024701.

    HOU M Q, GONG Z Z, XU K B, et al. Experimental study on hypervelocity impact characteristics of density-grade thin-plate [J]. Acta Physica Sinica, 2014, 63(2): 206–215. DOI: 10.7498/aps.63.024701.
    [20] 侯明强, 龚自正, 徐坤博, 等. 密度梯度型防护结构碎片云参数理论分析 [C]// 第十一届全国冲击动力学学术会议. 陕西咸阳, 2013.
    [21] 郑建东, 龚自正, 席爽, 等. 基于弹丸最大碎片理论的碎片云模型 [J]. 航天器环境工程, 2012, 29(4): 397–400, 2012. DOI: 10.3969/j.issn.1673-1379.2012.04.007.

    ZHENG J D, GONG Z Z, XI S, et al. A new debris cloud model based on the largest fragment theory [J]. Spacecraft Environment Engineering, 2012, 29(4): 397–400, 2012. DOI: 10.3969/j.issn.1673-1379.2012.04.007.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  850
  • HTML全文浏览量:  296
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2020-11-09
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回