惰性粉体对油页岩粉尘爆炸火焰的抑制性能和作用机理研究

孟祥豹 王俊峰 张延松 李志勇

孟祥豹, 王俊峰, 张延松, 李志勇. 惰性粉体对油页岩粉尘爆炸火焰的抑制性能和作用机理研究[J]. 爆炸与冲击, 2021, 41(10): 105401. doi: 10.11883/bzycj-2020-0306
引用本文: 孟祥豹, 王俊峰, 张延松, 李志勇. 惰性粉体对油页岩粉尘爆炸火焰的抑制性能和作用机理研究[J]. 爆炸与冲击, 2021, 41(10): 105401. doi: 10.11883/bzycj-2020-0306
MENG Xiangbao, WANG Junfeng, ZHANG Yansong, LI Zhiyong. Study on the inhibitory property and mechanism of inert powder on dust explosion flame of oil shale[J]. Explosion And Shock Waves, 2021, 41(10): 105401. doi: 10.11883/bzycj-2020-0306
Citation: MENG Xiangbao, WANG Junfeng, ZHANG Yansong, LI Zhiyong. Study on the inhibitory property and mechanism of inert powder on dust explosion flame of oil shale[J]. Explosion And Shock Waves, 2021, 41(10): 105401. doi: 10.11883/bzycj-2020-0306

惰性粉体对油页岩粉尘爆炸火焰的抑制性能和作用机理研究

doi: 10.11883/bzycj-2020-0306
基金项目: 中国博士后科学基金(2018M632693)
详细信息
    作者简介:

    孟祥豹(1980- ),男,博士,副教授,mxb@sdust.edu.cn

  • 中图分类号: O389

Study on the inhibitory property and mechanism of inert powder on dust explosion flame of oil shale

  • 摘要: 为了研究惰性粉体对油页岩粉尘爆炸火焰的抑制性能和作用机理,利用粉尘爆炸火焰传播测试系统,选取了五种常用惰性粉体和两种不同油页岩粉尘进行了爆炸火焰抑制实验。通过对爆炸火焰长度、最低惰化比和火焰形态结构的分析,结合惰性粉体的TG-DTG-DSC热特性曲线,系统研究了惰性粉体对油页岩粉尘爆炸火焰的抑制性能和作用机理。研究结果表明,惰性粉体对两种油页岩粉尘爆炸火焰的抑制性能优劣排序为:ABC干粉>Al(OH)3>Mg(OH)2>NaHCO3>岩粉,且两种惰性粉体均对桦甸油页岩(HDOS)的抑爆性能优于龙口油页岩(LKOS);本文建立了惰性粉体对油页岩粉尘爆炸火焰的抑制机理物理模型,并分析了作用机理,通过作用机理分析表明:高效抑爆粉体应具有热稳定性较好(分解温度在200~400 ℃),吸热量大,且分解中间态产物能够与燃烧反应活性自由基相结合发挥化学抑制作用等特点。
  • 图  1  粉尘爆炸火焰传播测试系统

    Figure  1.  Dust explosion flame propagation test system

    图  2  油页岩粉尘粒径分布

    Figure  2.  Particle size distribution of oil shale dust

    图  3  惰性粉体对HDOS粉尘火焰的抑制图像

    Figure  3.  Suppression images of inert powder on dust flame of HDOS

    图  4  惰性粉体对LKOS粉尘火焰的抑制图像

    Figure  4.  Suppression images of inert powder on dust flame of LKOS

    图  5  惰性粉尘对油页岩粉尘的最低惰化比

    Figure  5.  Minimum inerting ratio of inert dust to oil shale dust

    图  6  惰化比与油页岩粉尘爆炸火焰长度的关系

    Figure  6.  Relationship between inerting ratio and explosive flame length of oil shale dust

    图  7  HDOS粉尘爆炸火焰结构

    Figure  7.  Dust explosion flame structure of HDOS dust

    图  8  LKOS粉尘爆炸火焰结构

    Figure  8.  Dust explosion flame structures of LKOS dust

    图  9  惰性粉体的TG-DTG-DSC曲线

    Figure  9.  TG-DTG-DSC curves of inert powders

    图  10  惰性粉体抑制油页岩粉尘爆炸火焰机理

    Figure  10.  Inhibition mechanism of inert powder on dust explosion flame in oil shale

    表  1  油页岩样品的工业分析结果

    Table  1.   Proximate analyses of the oil shale sample

    样品质量分数/%
    MadAadVadFCad
    LKOS3.3939.3739.4917.75
    HDOS4.3758.8933.90 2.84
     注:Mad,水分;Aad,灰分;Vad,挥发分;FCad,固定碳
    下载: 导出CSV

    表  2  惰性粉体的统计粒径

    Table  2.   Statistical results of inert powder diameters

    惰性粉体D10/μmD50/μmD90/μm
    ABC干粉5.6329.6969.24
    岩粉4.2628.5273.58
    NaOH6.5833.2867.18
    Mg(OH)25.3426.8672.62
    Al(OH)34.8230.2470.16
    下载: 导出CSV
  • [1] HAN X X, KULAOTS I, JIANG X M, et al. Review of oil shale semicoke and its combustion utilization [J]. Fuel, 2014, 126: 143–161. DOI: 10.1016/j.fuel.2014.02.045.
    [2] LIU Z J, MENG Q T, DONG Q S, et al. Characteristics and resource potential of oil shale in China [J]. Oil Shale, 2017, 34(1): 15–41. DOI: 10.3176/oil.2017.1.02.
    [3] 柳蓉, 刘招君. 国内外油页岩资源现状及综合开发潜力分析 [J]. 吉林大学学报(地球科学版), 2006, 36(6): 892–898. DOI: 10.13278/j.cnki.jjuese.2006.06.004.

    LIU R, LIU Z J. Oil shale resource situation and multi-purpose development potential in China and abroad [J]. Journal of Jilin University (Earth Science Edition), 2006, 36(6): 892–898. DOI: 10.13278/j.cnki.jjuese.2006.06.004.
    [4] YU L F, LI G, LIU W C, et al. Experimental investigations on ignition sensitivity of hybrid mixtures of oil shale dust and syngas [J]. Fuel, 2017, 210: 1–7. DOI: 10.1016/j.fuel.2017.06.082.
    [5] 刘天奇, 李雨成, 罗红波. 不同变质程度煤尘爆炸压力特性变化规律实验研究 [J]. 爆炸与冲击, 2019, 39(9): 095403. DOI: 10.11883/bzycj-2018-0265.

    LIU T Q, LI Y C, LUO H B. Experimental study on explosion pressure variation law of coal dust with different degrees of metamorphism [J]. Explosion and Shock Waves, 2019, 39(9): 095403. DOI: 10.11883/bzycj-2018-0265.
    [6] LIU H, CHEN H Y, ZHANG X X, et al. Effects of different factors on the minimum ignition temperature of the mixed dust cloud of coal and oil shale [J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103977. DOI: 10.1016/j.jlp.2019.103977.
    [7] SWEIS F K. The effect of admixed material on the minimum explosible concentration of oil shale [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6): 701–704. DOI: 10.1016/j.jlp.2006.04.003.
    [8] 黄子超. 抛光铝粉爆炸及ABC粉体抑爆特性的实验研究 [J]. 中国安全生产科学技术, 2020, 16(7): 119–124. DOI: 10.11731/j.issn.1673-193x.2020.07.019.

    HUANG Z C. Experimental study on explosion of polished Aluminum powder and explosion suppression characteristics of ABC powder [J]. Journal of Safety Science and Technology, 2020, 16(7): 119–124. DOI: 10.11731/j.issn.1673-193x.2020.07.019.
    [9] 覃小玲, 李晓泉. NH4H2PO4对蔗糖粉尘爆炸的抑制作用试验研究 [J]. 中国安全科学学报, 2020, 30(4): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2020.04.007.

    QIN X L, LI X Q. Experimental research on suppression of NH4H2PO4 on sucrose dust explosion [J]. China Safety Science Journal, 2020, 30(4): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2020.04.007.
    [10] 薛少谦. 抑制瓦斯煤尘爆炸传播的主动喷粉抑爆技术 [J]. 煤矿安全, 2013, 44(7): 66–69. DOI: 10.13347/j.cnki.mkaq.2013.07.051.

    XUE S Q. Active dusting explosion suppression technology for inhibiting the spread of the gas and dust explosion [J]. Safety in Coal Mines, 2013, 44(7): 66–69. DOI: 10.13347/j.cnki.mkaq.2013.07.051.
    [11] WANG X, ZHANG Y S, LIU B, et al. Effectiveness and mechanism of carbamide/fly ash cenosphere with bilayer spherical shell structure as explosion suppressant of coal dust [J]. Journal of Hazardous Materials, 2019, 365: 555–564. DOI: 10.1016/j.jhazmat.2018.11.044.
    [12] HAMDAN M A, QUBBAJ A. Inhibition effect of inert compounds on oil shale dust explosion [J]. Applied Thermal Engineering, 1998, 18(5): 221–229. DOI: 10.1016/S1359-4311(97)00085-9.
    [13] HAMDAN M A, SAKHRIEH A. Dust explosion of oil shale and olive cake solid fuels: a comparison study [J]. International Journal of Energy Research, 2005, 29(10): 871–878. DOI: 10.1002/er.1055.
    [14] WANG J F, MENG X B, MA X S, et al. Experimental study on whether and how particle size affects the flame propagation and explosibility of oil shale dust [J]. Process Safety Progress, 2019, 38(3): e12075. DOI: 10.1002/prs.12075.
    [15] WANG J F, ZHANG Y S, SU H F, et al. Explosion characteristics and flame propagation behavior of mixed dust cloud of coal dust and oil shale dust [J]. Energies, 2019, 12(20): 3807. DOI: 10.3390/en12203807.
    [16] LIU B, ZHANG Y Y, MENG X B, et al. Study on explosion characteristics of the inert substances at Longkou oil shale of China [J]. Process Safety and Environmental Protection, 2020, 136: 324–333. DOI: 10.1016/j.psep.2019.12.033.
    [17] 王燕, 程义伸, 曹建亮, 等. 核-壳型KHCO3/赤泥复合粉体的甲烷抑爆特性 [J]. 煤炭学报, 2017, 42(3): 653–658. DOI: 10.13225/j.cnki.jccs.2016.0434.

    WANG Y, CHENG Y S, CAO J L, et al. Suppression characteristics of KHCO3/red-mud composite powders with core-shell structure on methane explosion [J]. Journal of China Coal Society, 2017, 42(3): 653–658. DOI: 10.13225/j.cnki.jccs.2016.0434.
    [18] JIANG H P, BI M S, LI B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion [J]. Journal of Hazardous Materials, 2019, 361: 273–282. DOI: 10.1016/j.jhazmat.2018.07.045.
    [19] 曹卫国. 褐煤粉尘爆炸特性实验及机理研究[D]. 南京: 南京理工大学, 2016: 73−74

    CAO W G. Experimental and mechanism study on explosion characteristic of lignite coal dust [D]. Nanjing: Nanjing University of Science and Technology, 2016: 73−74.
    [20] 陈曦, 陈先锋, 张洪铭, 等. 惰化剂粒径对铝粉火焰传播特性影响的实验研究 [J]. 爆炸与冲击, 2017, 37(4): 759–765. DOI: 10.11883/1001-1455(2017)04-0759-07.

    CHEN X, CHEN X F, ZHANG H M, et al. Effects of inerting agent with different particle sizes on the flame propagation of aluminum dust [J]. Explosion and Shock Waves, 2017, 37(4): 759–765. DOI: 10.11883/1001-1455(2017)04-0759-07.
    [21] 朱小超, 郑立刚, 于水军, 等. 阻塞比对竖直管道中铝粉爆炸特性的影响研究 [J]. 爆炸与冲击, 2019, 39(10): 105402. DOI: 10.11883/bzycj-2019-0006.

    ZHU X C, ZHENG L G, YU S J, et al. Effect of blocking ratio on aluminum powder explosion’s characteristics in vertical duct [J]. Explosion and Shock Waves, 2019, 39(10): 105402. DOI: 10.11883/bzycj-2019-0006.
    [22] JIANG H P, BI M S, PENG Q K, et al. Suppression of pulverized biomass dust explosion by NaHCO3 and NH4H2PO4 [J]. Renewable Energy, 2020, 147: 2046–2055. DOI: 10.1016/j.renene.2019.10.026.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  265
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2020-10-10
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回