7 km/s以上超高速发射技术研究进展

罗斌强 张旭平 郝龙 莫建军 王桂吉 宋振飞 谭福利 王翔 赵剑衡

罗斌强, 张旭平, 郝龙, 莫建军, 王桂吉, 宋振飞, 谭福利, 王翔, 赵剑衡. 7 km/s以上超高速发射技术研究进展[J]. 爆炸与冲击, 2021, 41(2): 021401. doi: 10.11883/bzycj-2020-0307
引用本文: 罗斌强, 张旭平, 郝龙, 莫建军, 王桂吉, 宋振飞, 谭福利, 王翔, 赵剑衡. 7 km/s以上超高速发射技术研究进展[J]. 爆炸与冲击, 2021, 41(2): 021401. doi: 10.11883/bzycj-2020-0307
LUO Binqiang, ZHANG Xuping, HAO Long, MO Jianjun, WANG Guiji, SONG Zhenfei, TAN Fuli, WANG Xiang, ZHAO Jianheng. Advances on the techniques of ultrahigh-velocity launch above 7 km/s[J]. Explosion And Shock Waves, 2021, 41(2): 021401. doi: 10.11883/bzycj-2020-0307
Citation: LUO Binqiang, ZHANG Xuping, HAO Long, MO Jianjun, WANG Guiji, SONG Zhenfei, TAN Fuli, WANG Xiang, ZHAO Jianheng. Advances on the techniques of ultrahigh-velocity launch above 7 km/s[J]. Explosion And Shock Waves, 2021, 41(2): 021401. doi: 10.11883/bzycj-2020-0307

7 km/s以上超高速发射技术研究进展

doi: 10.11883/bzycj-2020-0307
详细信息
    作者简介:

    罗斌强(1985- ),男,博士,副研究员,bqluoo@caep.cn

    通讯作者:

    赵剑衡(1969- ),男,博士,研究员,jianh_zhao@caep.cn

  • 中图分类号: O385

Advances on the techniques of ultrahigh-velocity launch above 7 km/s

  • 摘要: 介绍了毫克至克量级弹丸7 km/s以上超高速发射技术的国内外研究进展,并对各发射装置的工作原理和技术要素进行了简要阐述。基于电磁驱动准等熵加载,美国ZR装置驱动25 mm×13 mm×1.0 mm铝飞片至46 km/s速度,国内CQ系列磁驱动加载装置实现了10 mm×6 mm×0.33 mm铝飞片18 km/s的发射。借助于金属箔电爆炸产生高压气体驱动,美国利弗莫尔实验室100 kV电炮装置驱动9.5 mm×9.5 mm×0.3 mm 的Kapton 膜至18 km/s,国内流体物理研究所98 kJ和200 kJ电炮装置分别驱动$\varnothing $10 mm×0.2 mm Mylar飞片和$\varnothing $21 mm×0.5 mm Mylar飞片到10 km/s。基于阻抗梯度飞片技术,采用汇聚型和非汇聚型结构三级轻气炮,实现了厘米量级铝飞片和TC4钛飞片12~15 km/s速度发射。这些超高速驱动技术的发展,为空间碎片防护研究提供了坚实的技术支持。
  • 图  1  磁驱动高速飞片发射示意图

    Figure  1.  Schematic diagram of a magnetically driven high-velocity flyer

    图  2  ZR装置驱动超高速铝飞片速度曲线[10]

    Figure  2.  Velocity profiles of aluminum flyers driven by the ZR machine[10]

    图  3  CQ-4装置驱动飞片速度曲线

    Figure  3.  Velocity curves of metallic flyer driven by the CQ-4 device

    图  4  CQ-4装置驱动薄铝飞片速度曲线

    Figure  4.  Ultra-high velocity curves of aluminum flyer driven by the CQ-4 device

    图  5  CQ-4装置照片

    Figure  5.  A photo of the CQ-4 device

    图  6  磁驱动飞片实验电极照片

    Figure  6.  Photo of flyer accelerating electrode on the CQ-4 device

    图  7  电炮加载原理图

    Figure  7.  Schematic diagram of an electrical gun

    图  8  LLNL实验室100 kV电炮驱动飞片速度曲线

    Figure  8.  Velocity profile of Mylar flyer driven by the 100-kV electrical gun in LLNL

    图  9  14.4 kJ电炮装置在不同电压下放电电流曲线

    Figure  9.  Current profiles of a 14.4 kJ electrical gun at different voltages

    图  10  14.4 kJ电炮装置在不同电压下的飞片速度曲线

    Figure  10.  Velocity profiles of a 14.4 kJ electrical gun at different voltages

    图  11  98 kJ电炮装置

    Figure  11.  A photo of the 98-kJ electrical gun in IFP

    图  12  200 kJ电炮装置

    Figure  12.  A photo of the 200-kJ electrical gun in IFP

    图  13  98 kJ电炮驱动飞片速度曲线

    Figure  13.  Velocity of a Mylar flyer driven by a 98-kJ electrical gun

    图  14  200 kJ电炮驱动飞片速度曲线

    Figure  14.  Velocity of a Mylar flyer driven by a 200-kJ electrical gun

    图  15  基于阻抗梯度飞片的三级炮结构示意图

    Figure  15.  Schematic diagrams of three-stage light gas guns based on GDI

    图  16  三级炮发射的LY-12铝合金飞片速度曲线(非汇聚型)

    Figure  16.  Velocity curves of an LY-12 Al flyer driven by a non-convergent configuration three-stage gas gun based on GDI

    图  17  三级炮发射的TC4钛合金飞片速度曲线(汇聚型)

    Figure  17.  Velocity curves of TC4 titanium flyers driven by a convergent configuration three-stage gas gun based on GDI

    图  18  单层铝板被速度9 km/s 的Mylar飞片正撞击后的破坏情况

    Figure  18.  Failure characteristics of a single aluminum plate impacted by a 9-km/s Mylar flyer

    图  19  $\varnothing $11 mm×0.25 mm 的Mylar飞片以9 km/s的速度撞击铝Whipple结构时后板的破坏情况

    Figure  19.  Failure characteristics of an aluminum Whipple impacted by a $\varnothing $11 mm×0.25 mm Mylar flyer at 9 km/s

    图  20  速度10.6 km/s的铝片撞击铝Whipple的破坏过程

    Figure  20.  Failure progress of an aluminum Whipple impacted by a 10.6-km/s aluminum flyer

    表  1  超过7 km/s的超高速发射技术比较

    Table  1.   Comparison of ultrahigh-velocity launch technologies above 7 km/s

    发射技术最大速度/(km∙s−1)弹丸质量/mg弹丸形状技术特点
    传统三级炮10102~103飞片/球高速发射时炮管易损坏
    GDI三级炮15102~103飞片高质量GDI飞片制备较难,汇聚型结构飞片姿态不易控制
    磁驱动45101~102金属飞片飞片存在烧蚀,烧蚀厚度需实验定标
    电炮18101~102塑料飞片飞片后续等离子作用较强
    定向聚能技术12102~103金属管炸药爆轰加载,弹丸质量与形状调整相对较难
    下载: 导出CSV
  • [1] PIEKUTOWSKI A J, POORMON K L. Development of a three-stage, light-gas gun at the University of Dayton Research Institute [J]. International Journal of Impact Engineering, 2006, 33: 615–624. DOI: 10.1016/j.ijimpeng.2006.09.018.
    [2] PIEKUTOWSKI A J, POORMON K L. Impact of thin aluminum sheets with aluminum spheres up to 9 km/s [J]. International Journal of Impact Engineering, 2008, 35: 1716–1722. DOI: 10.1016/j.ijimpeng.2008.07.023.
    [3] 林俊德, 张向荣, 朱玉荣, 等. 超高速撞击实验的三级压缩气体炮技术 [J]. 爆炸与冲击, 2012, 32(5): 483–489. DOI: 10.11883/1001-1455(2012)05-0483-07.

    LIN J D, ZHANG X R, ZHU Y R, et al. The technique of three-stage compressed gas gun for hypervelocity impact [J]. Explosion and Shock Waves, 2012, 32(5): 483–489. DOI: 10.11883/1001-1455(2012)05-0483-07.
    [4] WALKER J D, GROSCH D J, MULLIN S A. A hypervelocity fragment launcher based on an inhibited shaped charge [J]. International Journal of Impact Engineering, 1993, 14: 763–774. DOI: 10.1016/0734-743X(93)90070-N.
    [5] 文尚刚, 孙承纬, 赵锋, 等. 多级爆轰驱动——研究超高速碰撞的一种新的加载技术 [J]. 高压物理学报, 2000, 14(1): 22–27. DOI: 10.11858/gywlxb.2000.01.004.

    WEN S G, SUN C W, ZHAO F, et al. Multi-stage detonation system—a new loading technology for studying hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2000, 14(1): 22–27. DOI: 10.11858/gywlxb.2000.01.004.
    [6] 赵士操, 宋振飞, 姬广富, 等. 一种基于二级轻气炮平台的超高速弹丸发射装置设计 [J]. 高压物理学报, 2011, 25(6): 557–564. DOI: 10.11858/gywlxb.2011.06.012.

    ZHAO S C, SONG Z F, JI G F, et al. A novel design of a hypervelocity launcher based on two-stage gas gun facilities [J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 557–564. DOI: 10.11858/gywlxb.2011.06.012.
    [7] STEINBERG D, CHAU H, DITTBENNER G, et al. The electric gun: a new method for generating shock pressures in excess of 1 TPa: 17943 [R]. UCID, 1978.
    [8] OSHER J E, BARNES G, CHAU H H, et al. Operating characteristics and modeling of the LLNL 100-kV electric gun [J]. IEEE Transactions on Plasma Science, 1989, 17(3): 392–402. DOI: 10.1109/27.32247.
    [9] CHHABILDAS L C, KMETYK L N, REINHART W D, et al. Enhanced hypervelocity launcher capabilities to 16 km/s [J]. International Journal of Impact Engineering, 1995, 17: 183–194. DOI: 10.1016/0734-743X(95)99845-I.
    [10] LEMKE R W, KNUDSON M D, DAVIS J D. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38: 480–485. DOI: 10.1016/j.ijimpeng.2010.10.019.
    [11] 马文来, 庞宝君, 张伟, 等. 双层防护屏结构的正撞击研究 [J]. 中国空间科学技术, 2001, 2: 68–71. DOI: 10.3321/j.issn:1000-758X.2001.02.012.

    MA W L, PANG B J, ZHANG W, et al. Research of dual-sheet shield structure with the normal impact [J]. Chinese Space Science and Technology, 2001, 2: 68–71. DOI: 10.3321/j.issn:1000-758X.2001.02.012.
    [12] 管公顺, 庞宝君, 哈跃, 等. 铝双层板结构高速撞击防护性能实验 [J]. 哈尔滨工业大学学报, 2007, 39(3): 402–405. DOI: 10.3321/j.issn:0367-6234.2007.03.017.

    GUAN G S, PANG B J, HA Y, et al. Experimental investigation of resist capability about aluminum dual-wall structure by high-velocity impact [J]. Journal of Harbin Institute of Technology, 2007, 39(3): 402–405. DOI: 10.3321/j.issn:0367-6234.2007.03.017.
    [13] 柳森, 黄洁, 李毅, 等. 中国空气动力研究与发展中心的空间碎片超高速撞击试验研究进展 [J]. 载人航天, 2011, 6: 17–23. DOI: 10.3969/j.issn.1674-5825.2011.06.004.

    LIU S, HUANG J, LI Y, et al. Recent advancement of hypervelocity impact test at HAI, CARDC [J]. Manned Spaceflight, 2011, 6: 17–23. DOI: 10.3969/j.issn.1674-5825.2011.06.004.
    [14] ZHANG Q M, CHEN Y H, HUANG F L. Experimental study of hypervelocity impact on multi-shock structure [J]. Journal of Beijing Institute of Technology, 2004, 13(3): 274–279. DOI: 10.3969/j.issn.1004-0579.2004.03.009.
    [15] CHEN Y H, ZHANG Q M, HUANG F L. Experimental study and numerical simulation of hypervelocity projectile impact on double-wall structure [J]. Journal of Beijing Institute of Technology, 2004, 13(3): 280–284. DOI: 10.3969/j.issn.1004-0579.2004.03.010.
    [16] SONG Z F, MO J J, ZHAO J H, et al. Study on launching technique of a 98 kJ electric gun for hypervelocity impact experiments [J]. International Journal of Impact Engineering, 2018, 122: 419–430. DOI: 10.1016/j.ijimpeng.2018.04.012.
    [17] WEN X, HUANG J, MA Z X, et al. Shielding performance of debris shield with separated rear wall [J]. International Journal of Impact Engineering, 2020, 13: 103446. DOI: 10.1016/j.ijimpeng.2019.103446.
    [18] ZHANG X P, WANG G J, ZHAO J H, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instrument, 2014, 85(5): 055110. DOI: 10.1063/1.4875705.
    [19] WANG G J, SUN C W, TAN F L, et al. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments [J]. Review of Scientific Instrument, 2008, 79(5): 053904. DOI: 10.1063/1.2920200.
    [20] WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instrument, 2013, 84(1): 015117. DOI: 10.1063/1.4788935.
    [21] 张旭平, 赵剑衡, 谭福利, 等. 一种耦合电路分析的磁驱动飞片数值计算方法 [J]. 爆炸与冲击, 2014, 34(3): 257–263. DOI: 10.3969/j.issn.1001-1455.2014.03.001.

    ZHANG X P, ZHAO J H, TAN F L, et al. A method for magnetically driven flyer simulation coupled with electrical circuit of generator [J]. Explosion and Shock Waves, 2014, 34(3): 257–263. DOI: 10.3969/j.issn.1001-1455.2014.03.001.
    [22] 张旭平, 赵剑衡, 谭福利, 等. 磁驱动飞片的三维数值模拟及分析 [J]. 高压物理学报, 2014, 28(4): 483–488. DOI: 10.11858/gywlxb.2014.04.015.

    ZHANG X P, ZHAO J H, TAN F L, et al. Three-dimensional numerical simulation and analysis of magnetically driven flyer plates [J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 483–488. DOI: 10.11858/gywlxb.2014.04.015.
    [23] 王贵林, 张朝辉, 孙奇志, 等. 基于“聚龙一号”装置的磁驱动加载实验技术研究进展 [J]. 高能量密度物理, 2020(1): 14–26.
    [24] RICHARD C, WEINGART R C. Electric gun: applications and potential: UCRL252000802 [R]. 1980.
    [25] OSHER J, CHAU H H, GATHERS R, et al. Application of 100 kV electric gun for hypervelocity impact studies [J]. International Journal of Impact Engineering, 1987, 5: 501–507. DOI: 10.1016/0734-743X(87)90065-0.
    [26] LEE R S, OSHER J E, CHAU H H. 1 MJ electric gun facility at LLNL [J]. IEEE Transactions on Magnetics, 1993, 29(1): 457–460. DOI: 10.1109/20.195618.
    [27] 赵剑衡, 孙承纬, 唐小松, 等. 高效能电炮实验装置的研制 [J]. 实验力学, 2006, 21(3): 369–375. DOI: 10.3969/j.issn.1001-4888.2006.03.018.

    ZHAO J H, SUN C W, TANG X S, et al. Development of electric gun with high performance [J]. Journal of Experimental Mechanics, 2006, 21(3): 369–375. DOI: 10.3969/j.issn.1001-4888.2006.03.018.
    [28] 王桂吉, 赵剑衡, 唐小松, 等. 电炮驱动Mylar 膜飞片完整性实验研究 [J]. 实验力学, 2006, 21(4): 454–458. DOI: 10.3969/j.issn.1001-4888.2006.04.007.

    WANG G J, ZHAO J H, TANG X S, et al. Experimental study on the integrality of Mylar flyer driven by electric gun [J]. Journal of Experimental Mechanics, 2006, 21(4): 454–458. DOI: 10.3969/j.issn.1001-4888.2006.04.007.
    [29] WANG G J, HE J, ZHAO J H, et al. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments [J]. Review of Scientific Instrument, 2011, 82(9): 095105. DOI: 10.1063/1.3633773.
    [30] LUO B Q, SUN C W, ZHAO J H, et al. Unified numerical simulation of metallic foil electrical explosion and its applications [J]. IEEE Transactions on Plasma Science, 2013, 41(1): 49–57. DOI: 10.1109/TPS.2012.2227827.
    [31] CHHABILDAS L C, BARKERL M, ASAY J R, et al. Sandia’s hypervelocity launcher—HVL: SAND91-0657 [R]. Sandia National Laboratories, 1991.
    [32] CHHABILDAS L C, HERTEL E S, HILL S A. Experimental and numerical simulations of orbital debris impact on a Whipple bumper shield: SAND-91-0889C [R]. Sandia National Laboratories, 1991.
    [33] 王青松, 王翔, 戴诚达, 等. 三级炮加载技术在超高压状态方程研究中的应用 [J]. 高压物理学报, 2010, 24(3): 187–191. DOI: 10.11858/gywlxb.2010.03.005.

    WANG Q S, WANG X, DAI C D, et al. Research on EOS at extremely high pressure using a three-stage gas gun hypervelocity launcher techniques [J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 187–191. DOI: 10.11858/gywlxb.2010.03.005.
    [34] 王青松, 王翔, 郝龙, 等. 三级炮超高速发射技术研究进展 [J]. 高压物理学报, 2014, 28(3): 339–345. DOI: 10.11858/gywlxb.2014.03.012.

    WANG Q S, WANG X, HAO L, et al. Progress on hypervelocity launcher techniques using a three-stage gun [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 339–345. DOI: 10.11858/gywlxb.2014.03.012.
    [35] 柏劲松, 谭华, 李平, 等. 阻抗梯度飞片加载下的超高速发射二维数值模拟方法 [J]. 计算物理, 2004, 21(4): 305–310. DOI: 10.3969/j.issn.1001-246X.2004.04.004.

    BAI J S, TAN H, LI P, et al. Numerical simulation method for 2-D hypervelocity launcher under the graded density impactor drives [J]. Chinese Journal of Computational Physics, 2004, 21(4): 305–310. DOI: 10.3969/j.issn.1001-246X.2004.04.004.
    [36] 沈强, 张联盟, 王传彬, 等. 梯度飞片材料的波阻抗分布设计与优化 [J]. 物理学报, 2003, 52(7): 1663–1667. DOI: 10.3321/j.issn:1000-3290.2003.07.020.

    SHEN Q, ZHANG L M, WANG C B, et al. Design and optimization of wave impedance distribution for flyer materials [J]. Acta Physica Sinica, 2003, 52(7): 1663–1667. DOI: 10.3321/j.issn:1000-3290.2003.07.020.
    [37] 王翔, 王青松, 彭建祥, 等. 三级炮超高速发射技术在空间碎片防护研究中的初步应用 [J]. 高能量密度物理, 2017(4): 115–122.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  703
  • HTML全文浏览量:  250
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-29
  • 修回日期:  2020-10-26
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回