Advances on the techniques of ultrahigh-velocity launch above 7 km/s
-
摘要: 介绍了毫克至克量级弹丸7 km/s以上超高速发射技术的国内外研究进展,并对各发射装置的工作原理和技术要素进行了简要阐述。基于电磁驱动准等熵加载,美国ZR装置驱动25 mm×13 mm×1.0 mm铝飞片至46 km/s速度,国内CQ系列磁驱动加载装置实现了10 mm×6 mm×0.33 mm铝飞片18 km/s的发射。借助于金属箔电爆炸产生高压气体驱动,美国利弗莫尔实验室100 kV电炮装置驱动9.5 mm×9.5 mm×0.3 mm 的Kapton 膜至18 km/s,国内流体物理研究所98 kJ和200 kJ电炮装置分别驱动
$\varnothing $ 10 mm×0.2 mm Mylar飞片和$\varnothing $ 21 mm×0.5 mm Mylar飞片到10 km/s。基于阻抗梯度飞片技术,采用汇聚型和非汇聚型结构三级轻气炮,实现了厘米量级铝飞片和TC4钛飞片12~15 km/s速度发射。这些超高速驱动技术的发展,为空间碎片防护研究提供了坚实的技术支持。Abstract: Advances on ultrahigh-velocity launch techniques were introduced, which involving magnetically-driven metallic flyer, metallic foil electrically explosion driven plastic flyer and three-stage light gas gun based on graded density impactor (GDI) driven flyer techniques. The magnetically-driven flyer technique utilizes the Lorentz force produced by the interact of intense current and strong magnetic field to accelerate a metallic flyer shocklessly, and a 25 mm×13 mm×1.0 mm aluminum flyer was launched to 46 km/s on the ZR machnine at Sandia National Laboratory (SNL). This technique has been developed in Institute of Fluid Physics (IFP) since 2008, series compact pulsed power generators such as CQ-1.5, CQ-4, CQ-7 with increasing loading capability in turn, were established and hypervelocity metallic flyer launching experiments were conducted. The shape of the loading electrode for launching a flyer was optimized by using a magnetic hydrodynamic code, and an aluminum flyer with the initial sizes of 10 mm×6 mm×0.33 mm was accelerated to 18 km/s within a distance of up to several millimeters. The metallic foil electrically-explosion driven flyer technique, usually named as electrical gun (EG), uses the high-pressure gas produced by electrical exploding of a metal foil to accelerate a plastic flyer. A Kapton flyer with the sizes of 9.5 mm×9.5 mm×0.3 mm was accelerated to 18 km/s in Lawrence Livermore National Laboratory. The electrical gun technique has been developed in IFP since 2006, series electrical guns with increasing loading capability were established, namely 14.4-kJ EG, 98-kJ EG and 200-kJ EG. A unified numerical simulation program was developed to give insight to the progress of metallic foil electrical explosion and to optimize the experimental designs. By using 98-kJ and 200-kJ electric guns, the Mylar flyers with the sizes of$\varnothing $ 10 mm×0.2 mm and$\varnothing $ 21 mm×0.5 mm and the mass of hundreds of milligrams were launched up to 10 km/s. A three-stage light gas gun based on GDI transfers the kinetic energy of a GDI to a metallic flyer shocklessly, and a centimeter-sized metallic flyer was launched to 15 km/s in SNL. This technique has been investigated in IFP since 2003, and the preparation of high-quality GDIs is mainly focused on. Numerical simulation on GDI-driven hypervelocity launch was carried out, convergent and non-convergent structures of the third-stage barrel muzzle were improved. By ultilizing the three-stage gas gun based on GDI, an aluminum flyer and a TC4 flyer were launched to 12−15 km/s. By using the ultrahigh-velocity launch techniques mentioned above, a protective structure of space aircraft was impacted at the velocity above 7 km/s to test its protection ability and ballistic limits. The results show that these ultrahigh-velocity launch technologies can provide reliable technical supports for space debris protection research. -
表 1 超过7 km/s的超高速发射技术比较
Table 1. Comparison of ultrahigh-velocity launch technologies above 7 km/s
发射技术 最大速度/(km∙s−1) 弹丸质量/mg 弹丸形状 技术特点 传统三级炮 10 102~103 飞片/球 高速发射时炮管易损坏 GDI三级炮 15 102~103 飞片 高质量GDI飞片制备较难,汇聚型结构飞片姿态不易控制 磁驱动 45 101~102 金属飞片 飞片存在烧蚀,烧蚀厚度需实验定标 电炮 18 101~102 塑料飞片 飞片后续等离子作用较强 定向聚能技术 12 102~103 金属管 炸药爆轰加载,弹丸质量与形状调整相对较难 -
[1] PIEKUTOWSKI A J, POORMON K L. Development of a three-stage, light-gas gun at the University of Dayton Research Institute [J]. International Journal of Impact Engineering, 2006, 33: 615–624. DOI: 10.1016/j.ijimpeng.2006.09.018. [2] PIEKUTOWSKI A J, POORMON K L. Impact of thin aluminum sheets with aluminum spheres up to 9 km/s [J]. International Journal of Impact Engineering, 2008, 35: 1716–1722. DOI: 10.1016/j.ijimpeng.2008.07.023. [3] 林俊德, 张向荣, 朱玉荣, 等. 超高速撞击实验的三级压缩气体炮技术 [J]. 爆炸与冲击, 2012, 32(5): 483–489. DOI: 10.11883/1001-1455(2012)05-0483-07.LIN J D, ZHANG X R, ZHU Y R, et al. The technique of three-stage compressed gas gun for hypervelocity impact [J]. Explosion and Shock Waves, 2012, 32(5): 483–489. DOI: 10.11883/1001-1455(2012)05-0483-07. [4] WALKER J D, GROSCH D J, MULLIN S A. A hypervelocity fragment launcher based on an inhibited shaped charge [J]. International Journal of Impact Engineering, 1993, 14: 763–774. DOI: 10.1016/0734-743X(93)90070-N. [5] 文尚刚, 孙承纬, 赵锋, 等. 多级爆轰驱动——研究超高速碰撞的一种新的加载技术 [J]. 高压物理学报, 2000, 14(1): 22–27. DOI: 10.11858/gywlxb.2000.01.004.WEN S G, SUN C W, ZHAO F, et al. Multi-stage detonation system—a new loading technology for studying hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2000, 14(1): 22–27. DOI: 10.11858/gywlxb.2000.01.004. [6] 赵士操, 宋振飞, 姬广富, 等. 一种基于二级轻气炮平台的超高速弹丸发射装置设计 [J]. 高压物理学报, 2011, 25(6): 557–564. DOI: 10.11858/gywlxb.2011.06.012.ZHAO S C, SONG Z F, JI G F, et al. A novel design of a hypervelocity launcher based on two-stage gas gun facilities [J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 557–564. DOI: 10.11858/gywlxb.2011.06.012. [7] STEINBERG D, CHAU H, DITTBENNER G, et al. The electric gun: a new method for generating shock pressures in excess of 1 TPa: 17943 [R]. UCID, 1978. [8] OSHER J E, BARNES G, CHAU H H, et al. Operating characteristics and modeling of the LLNL 100-kV electric gun [J]. IEEE Transactions on Plasma Science, 1989, 17(3): 392–402. DOI: 10.1109/27.32247. [9] CHHABILDAS L C, KMETYK L N, REINHART W D, et al. Enhanced hypervelocity launcher capabilities to 16 km/s [J]. International Journal of Impact Engineering, 1995, 17: 183–194. DOI: 10.1016/0734-743X(95)99845-I. [10] LEMKE R W, KNUDSON M D, DAVIS J D. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38: 480–485. DOI: 10.1016/j.ijimpeng.2010.10.019. [11] 马文来, 庞宝君, 张伟, 等. 双层防护屏结构的正撞击研究 [J]. 中国空间科学技术, 2001, 2: 68–71. DOI: 10.3321/j.issn:1000-758X.2001.02.012.MA W L, PANG B J, ZHANG W, et al. Research of dual-sheet shield structure with the normal impact [J]. Chinese Space Science and Technology, 2001, 2: 68–71. DOI: 10.3321/j.issn:1000-758X.2001.02.012. [12] 管公顺, 庞宝君, 哈跃, 等. 铝双层板结构高速撞击防护性能实验 [J]. 哈尔滨工业大学学报, 2007, 39(3): 402–405. DOI: 10.3321/j.issn:0367-6234.2007.03.017.GUAN G S, PANG B J, HA Y, et al. Experimental investigation of resist capability about aluminum dual-wall structure by high-velocity impact [J]. Journal of Harbin Institute of Technology, 2007, 39(3): 402–405. DOI: 10.3321/j.issn:0367-6234.2007.03.017. [13] 柳森, 黄洁, 李毅, 等. 中国空气动力研究与发展中心的空间碎片超高速撞击试验研究进展 [J]. 载人航天, 2011, 6: 17–23. DOI: 10.3969/j.issn.1674-5825.2011.06.004.LIU S, HUANG J, LI Y, et al. Recent advancement of hypervelocity impact test at HAI, CARDC [J]. Manned Spaceflight, 2011, 6: 17–23. DOI: 10.3969/j.issn.1674-5825.2011.06.004. [14] ZHANG Q M, CHEN Y H, HUANG F L. Experimental study of hypervelocity impact on multi-shock structure [J]. Journal of Beijing Institute of Technology, 2004, 13(3): 274–279. DOI: 10.3969/j.issn.1004-0579.2004.03.009. [15] CHEN Y H, ZHANG Q M, HUANG F L. Experimental study and numerical simulation of hypervelocity projectile impact on double-wall structure [J]. Journal of Beijing Institute of Technology, 2004, 13(3): 280–284. DOI: 10.3969/j.issn.1004-0579.2004.03.010. [16] SONG Z F, MO J J, ZHAO J H, et al. Study on launching technique of a 98 kJ electric gun for hypervelocity impact experiments [J]. International Journal of Impact Engineering, 2018, 122: 419–430. DOI: 10.1016/j.ijimpeng.2018.04.012. [17] WEN X, HUANG J, MA Z X, et al. Shielding performance of debris shield with separated rear wall [J]. International Journal of Impact Engineering, 2020, 13: 103446. DOI: 10.1016/j.ijimpeng.2019.103446. [18] ZHANG X P, WANG G J, ZHAO J H, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instrument, 2014, 85(5): 055110. DOI: 10.1063/1.4875705. [19] WANG G J, SUN C W, TAN F L, et al. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments [J]. Review of Scientific Instrument, 2008, 79(5): 053904. DOI: 10.1063/1.2920200. [20] WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instrument, 2013, 84(1): 015117. DOI: 10.1063/1.4788935. [21] 张旭平, 赵剑衡, 谭福利, 等. 一种耦合电路分析的磁驱动飞片数值计算方法 [J]. 爆炸与冲击, 2014, 34(3): 257–263. DOI: 10.3969/j.issn.1001-1455.2014.03.001.ZHANG X P, ZHAO J H, TAN F L, et al. A method for magnetically driven flyer simulation coupled with electrical circuit of generator [J]. Explosion and Shock Waves, 2014, 34(3): 257–263. DOI: 10.3969/j.issn.1001-1455.2014.03.001. [22] 张旭平, 赵剑衡, 谭福利, 等. 磁驱动飞片的三维数值模拟及分析 [J]. 高压物理学报, 2014, 28(4): 483–488. DOI: 10.11858/gywlxb.2014.04.015.ZHANG X P, ZHAO J H, TAN F L, et al. Three-dimensional numerical simulation and analysis of magnetically driven flyer plates [J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 483–488. DOI: 10.11858/gywlxb.2014.04.015. [23] 王贵林, 张朝辉, 孙奇志, 等. 基于“聚龙一号”装置的磁驱动加载实验技术研究进展 [J]. 高能量密度物理, 2020(1): 14–26. [24] RICHARD C, WEINGART R C. Electric gun: applications and potential: UCRL252000802 [R]. 1980. [25] OSHER J, CHAU H H, GATHERS R, et al. Application of 100 kV electric gun for hypervelocity impact studies [J]. International Journal of Impact Engineering, 1987, 5: 501–507. DOI: 10.1016/0734-743X(87)90065-0. [26] LEE R S, OSHER J E, CHAU H H. 1 MJ electric gun facility at LLNL [J]. IEEE Transactions on Magnetics, 1993, 29(1): 457–460. DOI: 10.1109/20.195618. [27] 赵剑衡, 孙承纬, 唐小松, 等. 高效能电炮实验装置的研制 [J]. 实验力学, 2006, 21(3): 369–375. DOI: 10.3969/j.issn.1001-4888.2006.03.018.ZHAO J H, SUN C W, TANG X S, et al. Development of electric gun with high performance [J]. Journal of Experimental Mechanics, 2006, 21(3): 369–375. DOI: 10.3969/j.issn.1001-4888.2006.03.018. [28] 王桂吉, 赵剑衡, 唐小松, 等. 电炮驱动Mylar 膜飞片完整性实验研究 [J]. 实验力学, 2006, 21(4): 454–458. DOI: 10.3969/j.issn.1001-4888.2006.04.007.WANG G J, ZHAO J H, TANG X S, et al. Experimental study on the integrality of Mylar flyer driven by electric gun [J]. Journal of Experimental Mechanics, 2006, 21(4): 454–458. DOI: 10.3969/j.issn.1001-4888.2006.04.007. [29] WANG G J, HE J, ZHAO J H, et al. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments [J]. Review of Scientific Instrument, 2011, 82(9): 095105. DOI: 10.1063/1.3633773. [30] LUO B Q, SUN C W, ZHAO J H, et al. Unified numerical simulation of metallic foil electrical explosion and its applications [J]. IEEE Transactions on Plasma Science, 2013, 41(1): 49–57. DOI: 10.1109/TPS.2012.2227827. [31] CHHABILDAS L C, BARKERL M, ASAY J R, et al. Sandia’s hypervelocity launcher—HVL: SAND91-0657 [R]. Sandia National Laboratories, 1991. [32] CHHABILDAS L C, HERTEL E S, HILL S A. Experimental and numerical simulations of orbital debris impact on a Whipple bumper shield: SAND-91-0889C [R]. Sandia National Laboratories, 1991. [33] 王青松, 王翔, 戴诚达, 等. 三级炮加载技术在超高压状态方程研究中的应用 [J]. 高压物理学报, 2010, 24(3): 187–191. DOI: 10.11858/gywlxb.2010.03.005.WANG Q S, WANG X, DAI C D, et al. Research on EOS at extremely high pressure using a three-stage gas gun hypervelocity launcher techniques [J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 187–191. DOI: 10.11858/gywlxb.2010.03.005. [34] 王青松, 王翔, 郝龙, 等. 三级炮超高速发射技术研究进展 [J]. 高压物理学报, 2014, 28(3): 339–345. DOI: 10.11858/gywlxb.2014.03.012.WANG Q S, WANG X, HAO L, et al. Progress on hypervelocity launcher techniques using a three-stage gun [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 339–345. DOI: 10.11858/gywlxb.2014.03.012. [35] 柏劲松, 谭华, 李平, 等. 阻抗梯度飞片加载下的超高速发射二维数值模拟方法 [J]. 计算物理, 2004, 21(4): 305–310. DOI: 10.3969/j.issn.1001-246X.2004.04.004.BAI J S, TAN H, LI P, et al. Numerical simulation method for 2-D hypervelocity launcher under the graded density impactor drives [J]. Chinese Journal of Computational Physics, 2004, 21(4): 305–310. DOI: 10.3969/j.issn.1001-246X.2004.04.004. [36] 沈强, 张联盟, 王传彬, 等. 梯度飞片材料的波阻抗分布设计与优化 [J]. 物理学报, 2003, 52(7): 1663–1667. DOI: 10.3321/j.issn:1000-3290.2003.07.020.SHEN Q, ZHANG L M, WANG C B, et al. Design and optimization of wave impedance distribution for flyer materials [J]. Acta Physica Sinica, 2003, 52(7): 1663–1667. DOI: 10.3321/j.issn:1000-3290.2003.07.020. [37] 王翔, 王青松, 彭建祥, 等. 三级炮超高速发射技术在空间碎片防护研究中的初步应用 [J]. 高能量密度物理, 2017(4): 115–122.