Investigation on tungsten spheres penetrating into pine target covered with body armor
-
摘要: 为研究钨球对防弹衣加人体等效靶的侵彻性能,利用12.7 mm弹道枪对钨球侵彻三级软体防弹衣加25 mm厚红松靶开展了实验研究;在此基础上,利用LS-DYNA3D软件对侵彻过程及破坏机理进行了分析,并研究了钨球质量变化对弹道极限及靶板能量吸收的影响;依据量纲分析建立了钨球侵彻防弹衣加红松木复合靶的穿靶能量公式,推导了钨球的弹道极限公式。研究结果表明:0.17、0.21、0.44 g的小钨球侵彻防弹衣加红松木复合靶的弹道极限分别为742.3、692.9、570.1 m/s;侵彻过程中,防弹衣以基体开裂、纤维断裂和拉伸分层破坏为主,纤维层面内出现类似“十”字型的损伤,松木靶以剪切和冲塞剥落破坏为主;随着钨球质量的增加,弹道极限呈幂函数形式降低,靶板的能量吸收率逐渐降低;钨球穿靶能量公式及弹道极限公式的计算结果与实验结果吻合良好,可分别用于计算不同侵彻速度下的穿靶能量和不同质量钨球的弹道极限。Abstract: It is one of the future development directions to use small tungsten alloy spherical fragments in individual warhead. In order to investigation the penetration performance of small tungsten spheres against human simulation target covered with body armor, taking a 25 mm thick pine target of common international standards as the human simulation target, the experiment of small tungsten spheres penetrating into 25 mm thick pine target covered with third level body armor was carried out by a 12.7 mm ballistic gun. On this basis, the experiment was simulated by LS-DYNA3D software where the penetration process and failure mechanism were analyzed, and the influence of the mass change of tungsten spheres on energy absorption of target and ballistic limit were studied. According to dimensional analysis, energy formula of tungsten spheres penetrating into pine target covered with body armor was established, and the ballistic limit formula of tungsten spheres was deduced. The investigation results show that the ballistic limits of small tungsten spheres with the mass of 0.17, 0.21 and 0.44 g penetrating into the pine target covered with body armor are 742.3, 692.9 and 570.1 m/s, respectively. In the process of penetration, matrix crack, fiber breakage and tensile delamination are the main failure modes of body armor, and the damage similar to the "cross" shape appears on the fiber layer. However, the failure modes of pine target are mainly shear and plug spalling. The ballistic limit of tungsten sphere tends to decrease in the form of power function and energy absorption efficiency of target decreases gradually when the mass of tungsten sphere is increased. The calculated values of energy formula and ballistic limit formula of tungsten spheres penetrating into target are in good agreement with the experimental values, which can be used to calculate the energy of penetrating into target at different initial velocities and the ballistic limit of tungsten spheres with different mass.
-
Key words:
- tungsten sphere /
- body armor /
- pine target /
- ballistic limit /
- numerical simulation /
- dimensional analysis
-
表 1 钨球成分及其力学性能
Table 1. Chemical composition and mechanical properties of tungsten sphere
ρ/(g·cm−3) 质量分数/% 变形量/% HRC硬度 Ra/μm W Ni Fe Co 18.1 95.30 3.15 1.35 0.20 ≤40 ≥26 ≤1.6 注:ρ为密度,Ra为表面粗糙度,变形量为7 kN下的变形量。 表 2 钨球侵彻防弹衣加红松木复合靶的实验结果
Table 2. Experimental results of tungsten spheres penetrating into pine target covered with body armor
序号 着靶速度/(m·s−1) 剩余速度/(m·s−1) 结果 1 681.2 − 穿透防弹衣,嵌入松木靶 2 700.4 74.8 穿透防弹衣和松木靶 3 711.7 111.6 穿透防弹衣和松木靶 4 725.5 160.4 穿透防弹衣和松木靶 5 744.5 194.2 穿透防弹衣和松木靶 6 748.0 204.9 穿透防弹衣和松木靶 7 753.4 220.9 穿透防弹衣和松木靶 8 775.7 250.6 穿透防弹衣和松木靶 表 3 弹道极限及模型参数
Table 3. Ballistic limit and model parameters
钨球规格 a p vbl/(m·s−1) 质量0.21 g/直径2.8 mm 0.73 2 692.9 表 4 钨球材料模型参数
Table 4. Material model parameters of tungsten sphere
ρ/(g·cm−3) E/GPa μ σy/MPa Et/MPa β R1 R2 εf 18.1 367 0.303 1506 792 1 3.9 6 1.2 表 5 凯夫拉材料模型参数
Table 5. Material model parameters of kevlar
ρ/(g·cm−3) E1/GPa E2/GPa E3/GPa μ21 μ31 μ32 1.35 21 21 4.6 0.31 0.14 0.14 G12/GPa G23/GPa G31/GPa κf/GPa Gs/GPa Tx/GPa Ty/GPa 1.2 1.2 1.2 2 0.35 1.0 1.0 Cy/GPa α Tn/GPa Gyz/GPa Gzx/GPa 0.8 0.5 0.55 0.55 0.55 表 6 红松木材料模型参数
Table 6. Material model parameters of pine
ρ/(g·cm−3) E/GPa μ σf/MPa 0.46 11.68 0.31 294 表 7 模拟值与实验值的对比
Table 7. Comparison between simulated results and experimental results
vi/(m·s−1) vr/(m·s−1) 相对误差/% 实验值 计算值 681.2 0 0 0 700.4 74.8 80.9 8.16 711.7 111.6 119.2 6.81 725.5 160.4 168.3 4.93 744.5 194.2 202.8 4.43 748.0 204.9 209.2 2.10 753.4 220.9 218.4 −1.13 775.7 250.6 253.9 1.32 表 8 不同质量钨球侵彻防弹衣加红松木复合靶弹道极限的模拟结果
Table 8. Simulated results of ballistic limit of tungsten spheres with different mass penetrating into pine target covered with body armor
m/g vbl/(m·s−1) 0.21 690.5 0.26 647.0 0.31 619.0 0.36 595.0 0.41 575.0 0.46 556.0 表 9 不同质量钨球侵彻防弹衣加红松木复合靶的仿真结果
Table 9. Simulated results of tungsten spheres with different mass penetrating into pine target covered with body armor
着靶速度/(m·s−1) m=0.21 g m=0.26 g m=0.31 g 剩余速度/(m·s−1) 靶板能量吸收率 剩余速度/(m·s−1) 靶板能量吸收率 剩余速度/(m·s−1) 靶板能量吸收率 550 0 1 0 1 0 1 600 0 1 0 1 0 1 650 0 1 26.2 0.998 156.7 0.942 700 79.2 0.987 188.3 0.928 254.0 0.868 750 212.6 0.920 281.6 0.859 322.5 0.815 800 294.3 0.865 350.2 0.808 390.3 0.762 着靶速度/(m·s−1) m=0.36 g m=0.41 g m=0.46 g 剩余速度/(m·s−1) 靶板能量吸收率 剩余速度/(m·s−1) 靶板能量吸收率 剩余速度/(m·s−1) 靶板能量吸收率 550 0 1 0 1 0 1 600 65.1 0.988 121.0 0.959 172.8 0.917 650 197.6 0.908 232.4 0.872 267.1 0.831 700 287.4 0.831 315.0 0.798 345.0 0.757 750 354.9 0.776 376.7 0.748 400.3 0.715 800 416.8 0.729 437.1 0.701 457.0 0.674 表 10 影响穿靶能量的主要的物理量
Table 10. Main physical quantities affecting the energy of penetrating into target
材料名称 物理量 量符号 量纲式 钨球 着靶速度 vi LT−1 密度 ρp ML−3 直径 Dp L 弹性模量 Ep L−1MT−2 屈服强度 σsp L−1MT−2 特征应变 εp 1 声速 cp LT−1 防弹衣 密度 ρf ML−3 厚度 hf L 弹性模量 Ef L−1MT−2 抗压强度 σsf L−1MT−2 抗剪强度 στf L−1MT−2 抗拉强度 σff L−1MT−2 特征应变 εf 1 声速 cf LT−1 红松木 密度 ρs ML−3 厚度 hs L 弹性模量 Es L−1MT−2 失效应力 σss L−1MT−2 特征应变 εs 1 声速 cs LT−1 表 11 不同方法计算的穿靶能量的对比
Table 11. Comparison of energy of penetrating into target calculated by different methods
钨球规格 vi/(m·s−1) vr/(m·s−1) Ec/J 相对误差/% 实验结果 量纲分析结果 质量0.17 g
直径2.6 mm753.6 124.6 46.95 47.22 0.58 771.3 187.7 47.57 48.26 1.45 786.0 230.1 48.01 49.12 2.31 809.1 296.8 48.16 50.48 4.82 834.9 357.9 48.36 51.99 7.51 869.6 410.8 49.93 54.02 8.19 质量0.44 g
直径3.6 mm578.4 78.2 72.25 71.52 −1.01 597.7 141.8 74.17 73.76 −0.55 610.9 187.2 74.39 75.29 1.21 639.5 248.0 76.44 78.60 2.83 660.3 260.9 80.94 81.00 0.07 698.3 335.1 82.57 85.37 3.39 表 12 式(1)和式(12)计算的弹道极限的对比
Table 12. Comparison of ballistic limit calculated by formula (1) and formula (12)
钨球规格 vbl/(m·s−1) 相对误差/% 式(1) 式(12) 质量0.17 g/直径2.6 mm 742.3 738.1 −0.57 质量0.21 g/直径2.8 mm 692.9 697.4 0.65 质量0.44 g/直径3.6 mm 570.1 562.9 −1.26 -
[1] 程可. 轻武器杀伤元对明胶靶标侵彻的数值仿真研究[D]. 南京: 南京理工大学, 2012: 1−2. [2] 黄献聪. 军用防弹衣的性能需求与发展方向[C]// 2005现代服装纺织高科技发展研讨会论文集. 北京: 北京纺织工程学会, 2005: 421−427. [3] LIDÉN E, BERLIN R, JANZON B, et al. Some observations relating to behind-body armour blunt trauma effects caused by ballistic impact [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1988, 28(S1): 145–148. DOI: 10.1097/00005373-198801001-00029. [4] ROBERTS J C, O’CONNOR J V, WARD E E. Modeling the effect of nonpenetrating ballistic impact as a means of detecting behind-armor blunt trauma [J]. Journal of Trauma: Injury, Infection, and Critical Care, 2005, 58(6): 1241–1251. DOI: 10.1097/01.TA.0000169805.81214.DC. [5] ROBERTS J C, MERKLE A C, BIERMANN P J, et al. Computational and experimental models of the human torso for non-penetrating ballistic impact [J]. Journal of Biomechanics, 2007, 40(1): 125–136. DOI: 10.1016/j.jbiomech.2005.11.003. [6] MERKLE A C, WARD E E, O’CONNOR J V, et al. Assessing behind armor blunt trauma (BABT) under NIJ Standard-0101.04 conditions using human torso models [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2008, 64(6): 1555–1561. DOI: 10.1097/TA.0b013e318160ff3a. [7] GILSON L, RABET L, IMAD A, et al. Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatine [J]. International Journal of Impact Engineering, 2020, 136: 103417. DOI: 10.1016/j.ijimpeng.2019.103417. [8] 董萍, 陈菁, 张启宽, 等. 利用有限元研究非贯穿弹道冲击防弹衣后人体躯干的力学响应 [J]. 医用生物力学, 2012, 27(3): 270–275. DOI: 10.16156/j.1004-7220.2012.03.013.DONG P, CHEN J, ZHANG Q K, et al. Finite element analysis on mechanical responses of human torso with body armor to non-penetrating ballistic impact [J]. Journal of Medical Biomechanics, 2012, 27(3): 270–275. DOI: 10.16156/j.1004-7220.2012.03.013. [9] 韩瑞国, 金永喜, 卢海涛, 等. 步枪弹对带软硬复合防护明胶靶标的侵彻机制研究 [J]. 兵工学报, 2019, 40(10): 1995–2004. DOI: 10.3969/j.issn.1000-1093.2019.10.004.HAN R G, JIN Y X, LU H T, et al. Investigation into the penetrating mechanism of rifle bullet against the gelatin target with soft/hard composite armor [J]. Acta Armamentarii, 2019, 40(10): 1995–2004. DOI: 10.3969/j.issn.1000-1093.2019.10.004. [10] 刘坤, 吴志林, 宁建国, 等. 手枪弹对带软防护的明胶靶标侵彻机理与实验研究 [J]. 兵工学报, 2018, 39(1): 1–17. DOI: 10.3969/j.issn.1000-1093.2018.01.001.LIU K, WU Z L, NING J G, et al. Investigation on the mechanism and experiment of pistol cartridge penetrating into gelatin target with soft body armor [J]. Acta Armamentarii, 2018, 39(1): 1–17. DOI: 10.3969/j.issn.1000-1093.2018.01.001. [11] 黄拱武. 弹体撞击带纤维软防护明胶靶标的数值仿真研究[D]. 南京: 南京理工大学, 2013: 41−43. [12] 孙非, 马力, 朱一辉, 等. 手枪弹对带UHMWPE软防护明胶靶标冲击效应的数值分析 [J]. 振动与冲击, 2018, 37(13): 20–26. DOI: 10.13465/j.cnki.jvs.2018.13.004.SUN F, MA L, ZHU Y H, et al. Numerical analysis for impact effects of a pistol bullet on a gelatin target covered with UHMWPE fiber armor [J]. Journal of Vibration and Shock, 2018, 37(13): 20–26. DOI: 10.13465/j.cnki.jvs.2018.13.004. [13] 唐刘建, 温垚珂, 薛本源, 等. 手枪弹侵彻有防护仿生人体躯干靶标试验研究 [J]. 振动与冲击, 2019, 38(4): 245–249. DOI: 10.13465/j.cnki.jvs.2019.04.036.TANG L J, WEN Y K, XUE B Y, et al. Pistol bullet impact soft body armor covered bionic human torso [J]. Journal of Vibration and Shock, 2019, 38(4): 245–249. DOI: 10.13465/j.cnki.jvs.2019.04.036. [14] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. DOI: 10.1115/1.3636566. [15] 乔纳斯A·朱卡斯, NICHOLAS T, SWIFT H F, 等. 碰撞动力学[M]. 张志云, 丁世用, 魏传中, 译. 北京: 兵器工业出版社, 1989: 200−205. [16] 王雪, 智小琦, 徐锦波, 等. 球形破片侵彻多层板弹道极限的量纲分析 [J]. 高压物理学报, 2019, 33(6): 065102. DOI: 10.11858/gywlxb.20190757.WANG X, ZHI X Q, XU J B, et al. Dimensional analysis of ballistic limit of spherical fragments penetrating multi-layer plate [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065102. DOI: 10.11858/gywlxb.20190757. [17] CHANG F K, CHANG K Y. Post-failure analysis of bolted composite joints in tension or shear-out mode failure [J]. Journal of Composite Materials, 1987, 21(9): 809–833. DOI: 10.1177/002199838702100903. [18] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials, 1987, 21(9): 834–855. DOI: 10.1177/002199838702100904. [19] 胡年明, 陈长海, 侯海量, 等. 高速弹丸冲击下复合材料层合板损伤特性仿真研究 [J]. 兵器材料科学与工程, 2017, 40(3): 66–70. DOI: 10.14024/j.cnki.1004-244x.20170427.008.HU N M, CHEN C H, HOU H L, et al. Simulation on damage characteristic of composite laminates under high-velocity projectile impact [J]. Ordnance Material Science and Engineering, 2017, 40(3): 66–70. DOI: 10.14024/j.cnki.1004-244x.20170427.008. [20] 张建海. 攻坚弹药子弹弹道环境的初步试验研究与数值分析[D]. 南京: 南京理工大学, 2006: 24−25. [21] 景彤, 郭子云, 雷文星, 等. 步枪弹M855与M855A1的侵彻效能对比仿真 [J]. 弹箭与制导学报, 2018, 38(4): 45–48, 54. DOI: 10.15892/j.cnki.djzdxb.2018.04.011.JING T, GUO Z Y, LEI W X, et al. Simulation comparison of penetration efficiency of rifle projectile M855 and M855A1 [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(4): 45–48, 54. DOI: 10.15892/j.cnki.djzdxb.2018.04.011. [22] 刘国繁. 层合结构复合材料抗弹机理研究及模拟仿真[D]. 南京: 南京航空航天大学, 2015: 27−28. [23] 邓云飞, 袁家俊, 徐建新. 半球形头弹不同角度冲击下编织复合材料板的侵彻特性 [J]. 复合材料学报, 2018, 35(4): 843–849. DOI: 10.13801/j.cnki.fhclxb.20170704.002.DENG Y F, YUAN J J, XU J X. Penetration characteristics of woven composite laminates impacted by hemispherical-nosed projectiles at different angles [J]. Acta Materiae Compositae Sinica, 2018, 35(4): 843–849. DOI: 10.13801/j.cnki.fhclxb.20170704.002.