钨球侵彻防弹衣加红松木复合靶的研究

唐昌州 智小琦 高峰 于永利

唐昌州, 智小琦, 高峰, 于永利. 钨球侵彻防弹衣加红松木复合靶的研究[J]. 爆炸与冲击, 2021, 41(6): 063302. doi: 10.11883/bzycj-2020-0309
引用本文: 唐昌州, 智小琦, 高峰, 于永利. 钨球侵彻防弹衣加红松木复合靶的研究[J]. 爆炸与冲击, 2021, 41(6): 063302. doi: 10.11883/bzycj-2020-0309
TANG Changzhou, ZHI Xiaoqi, GAO Feng, YU Yongli. Investigation on tungsten spheres penetrating into pine target covered with body armor[J]. Explosion And Shock Waves, 2021, 41(6): 063302. doi: 10.11883/bzycj-2020-0309
Citation: TANG Changzhou, ZHI Xiaoqi, GAO Feng, YU Yongli. Investigation on tungsten spheres penetrating into pine target covered with body armor[J]. Explosion And Shock Waves, 2021, 41(6): 063302. doi: 10.11883/bzycj-2020-0309

钨球侵彻防弹衣加红松木复合靶的研究

doi: 10.11883/bzycj-2020-0309
详细信息
    作者简介:

    唐昌州(1996- ),男,硕士研究生,562870134@qq.com

    通讯作者:

    智小琦(1963- ),女,博士,教授,zxq4060@sina.com

  • 中图分类号: O385

Investigation on tungsten spheres penetrating into pine target covered with body armor

  • 摘要: 为研究钨球对防弹衣加人体等效靶的侵彻性能,利用12.7 mm弹道枪对钨球侵彻三级软体防弹衣加25 mm厚红松靶开展了实验研究;在此基础上,利用LS-DYNA3D软件对侵彻过程及破坏机理进行了分析,并研究了钨球质量变化对弹道极限及靶板能量吸收的影响;依据量纲分析建立了钨球侵彻防弹衣加红松木复合靶的穿靶能量公式,推导了钨球的弹道极限公式。研究结果表明:0.17、0.21、0.44 g的小钨球侵彻防弹衣加红松木复合靶的弹道极限分别为742.3、692.9、570.1 m/s;侵彻过程中,防弹衣以基体开裂、纤维断裂和拉伸分层破坏为主,纤维层面内出现类似“十”字型的损伤,松木靶以剪切和冲塞剥落破坏为主;随着钨球质量的增加,弹道极限呈幂函数形式降低,靶板的能量吸收率逐渐降低;钨球穿靶能量公式及弹道极限公式的计算结果与实验结果吻合良好,可分别用于计算不同侵彻速度下的穿靶能量和不同质量钨球的弹道极限。
  • 图  1  钨球、弹托及药筒

    Figure  1.  Tungsten spheres, sabots and cartridge

    图  2  弹丸侵彻实验示意

    Figure  2.  Sketch of the ballistic impact experiment

    图  3  实验后的防弹衣加红松木复合靶

    Figure  3.  Pine target covered with body armor after the experiment

    图  4  钨球剩余速度-着靶速度曲线

    Figure  4.  Curve of residual velocity-impact velocity of tungsten spheres

    图  5  有限元模型

    Figure  5.  Finite element model

    图  6  计算值与实验值的对比

    Figure  6.  Comparison between simulated results and experimental results

    图  7  不同着靶速度下钨球速度与加速度变化曲线

    Figure  7.  Variation curves of velocity and acceleration of tungsten sphere at different impact velocities

    图  8  钨球速度与加速度变化曲线(vi=748.0 m/s)

    Figure  8.  Variation curves of velocity and acceleration of tungsten sphere (vi=748.0 m/s)

    图  9  不同侵彻速度下松木靶背面的损伤形貌

    Figure  9.  Damage morphologies of the back of pine target at different impact velocities

    图  10  防弹衣正面与背面的典型von Mises应力变化

    Figure  10.  Typical von Mises stress variation of front and back of body armor

    图  11  纤维层面内损伤

    Figure  11.  In-plane damage of fiber layer

    图  12  弹道极限-质量变化曲线

    Figure  12.  Curve of ballistic limit-mass of tungsten spheres

    图  13  靶板能量吸收率-着靶速度曲线

    Figure  13.  Curve of energy absorption efficiency of target-impact velocity

    表  1  钨球成分及其力学性能

    Table  1.   Chemical composition and mechanical properties of tungsten sphere

    ρ/(g·cm−3质量分数/%变形量/%HRC硬度Ra/μm
    WNiFeCo
    18.195.303.151.350.20≤40≥26≤1.6
     注:ρ为密度,Ra为表面粗糙度,变形量为7 kN下的变形量。
    下载: 导出CSV

    表  2  钨球侵彻防弹衣加红松木复合靶的实验结果

    Table  2.   Experimental results of tungsten spheres penetrating into pine target covered with body armor

    序号着靶速度/(m·s−1剩余速度/(m·s−1结果
    1681.2穿透防弹衣,嵌入松木靶
    2700.4 74.8穿透防弹衣和松木靶
    3711.7111.6穿透防弹衣和松木靶
    4725.5160.4穿透防弹衣和松木靶
    5744.5194.2穿透防弹衣和松木靶
    6748.0204.9穿透防弹衣和松木靶
    7753.4220.9穿透防弹衣和松木靶
    8775.7250.6穿透防弹衣和松木靶
    下载: 导出CSV

    表  3  弹道极限及模型参数

    Table  3.   Ballistic limit and model parameters

    钨球规格apvbl/(m·s−1
    质量0.21 g/直径2.8 mm0.732692.9
    下载: 导出CSV

    表  4  钨球材料模型参数

    Table  4.   Material model parameters of tungsten sphere

    ρ/(g·cm−3E/GPaμσy/MPaEt/MPaβR1R2εf
    18.13670.303150679213.961.2
    下载: 导出CSV

    表  5  凯夫拉材料模型参数

    Table  5.   Material model parameters of kevlar

    ρ/(g·cm−3E1/GPaE2/GPaE3/GPaμ21μ31μ32
    1.3521214.60.310.140.14
    G12/GPaG23/GPaG31/GPaκf/GPaGs/GPaTx/GPaTy/GPa
    1.21.21.220.351.01.0
    Cy/GPaαTn/GPaGyz/GPaGzx/GPa
    0.80.50.550.550.55
    下载: 导出CSV

    表  6  红松木材料模型参数

    Table  6.   Material model parameters of pine

    ρ/(g·cm−3E/GPaμσf/MPa
    0.4611.680.31294
    下载: 导出CSV

    表  7  模拟值与实验值的对比

    Table  7.   Comparison between simulated results and experimental results

    vi/(m·s−1vr/(m·s−1相对误差/%
    实验值计算值
    681.2000
    700.474.880.98.16
    711.7111.6119.26.81
    725.5160.4168.34.93
    744.5194.2202.84.43
    748.0204.9209.22.10
    753.4220.9218.4−1.13
    775.7250.6253.91.32
    下载: 导出CSV

    表  8  不同质量钨球侵彻防弹衣加红松木复合靶弹道极限的模拟结果

    Table  8.   Simulated results of ballistic limit of tungsten spheres with different mass penetrating into pine target covered with body armor

    m/gvbl/(m·s−1
    0.21690.5
    0.26647.0
    0.31619.0
    0.36595.0
    0.41575.0
    0.46556.0
    下载: 导出CSV

    表  9  不同质量钨球侵彻防弹衣加红松木复合靶的仿真结果

    Table  9.   Simulated results of tungsten spheres with different mass penetrating into pine target covered with body armor

    着靶速度/(m·s−1m=0.21 gm=0.26 gm=0.31 g
    剩余速度/(m·s−1靶板能量吸收率剩余速度/(m·s−1靶板能量吸收率剩余速度/(m·s−1靶板能量吸收率
    550 0 1 0 1 0 1
    600 0 1 0 1 0 1
    650 0 1 26.20.998156.70.942
    700 79.20.987188.30.928254.00.868
    750212.60.920281.60.859322.50.815
    800294.30.865350.20.808390.30.762
    着靶速度/(m·s−1m=0.36 gm=0.41 gm=0.46 g
    剩余速度/(m·s−1靶板能量吸收率剩余速度/(m·s−1靶板能量吸收率剩余速度/(m·s−1靶板能量吸收率
    550 0 1 0 1 0 1
    600 65.10.988121.00.959172.80.917
    650197.60.908232.40.872267.10.831
    700287.40.831315.00.798345.00.757
    750354.90.776376.70.748400.30.715
    800416.80.729437.10.701457.00.674
    下载: 导出CSV

    表  10  影响穿靶能量的主要的物理量

    Table  10.   Main physical quantities affecting the energy of penetrating into target

    材料名称物理量量符号量纲式
    钨球着靶速度viLT−1
    密度ρpML−3
    直径DpL
    弹性模量EpL−1MT−2
    屈服强度σspL−1MT−2
    特征应变εp1
    声速cpLT−1
    防弹衣密度ρfML−3
    厚度hfL
    弹性模量EfL−1MT−2
    抗压强度σsfL−1MT−2
    抗剪强度στfL−1MT−2
    抗拉强度σffL−1MT−2
    特征应变εf1
    声速cfLT−1
    红松木密度ρsML−3
    厚度hsL
    弹性模量EsL−1MT−2
    失效应力σssL−1MT−2
    特征应变εs1
    声速csLT−1
    下载: 导出CSV

    表  11  不同方法计算的穿靶能量的对比

    Table  11.   Comparison of energy of penetrating into target calculated by different methods

    钨球规格vi/(m·s−1vr/(m·s−1Ec/J相对误差/%
    实验结果量纲分析结果
    质量0.17 g
    直径2.6 mm
    753.6124.646.9547.22 0.58
    771.3187.747.5748.26 1.45
    786.0230.148.0149.12 2.31
    809.1296.848.1650.48 4.82
    834.9357.948.3651.99 7.51
    869.6410.849.9354.02 8.19
    质量0.44 g
    直径3.6 mm
    578.478.272.2571.52−1.01
    597.7141.874.1773.76−0.55
    610.9187.274.3975.29 1.21
    639.5248.076.4478.60 2.83
    660.3260.980.9481.00 0.07
    698.3335.182.5785.37 3.39
    下载: 导出CSV

    表  12  式(1)和式(12)计算的弹道极限的对比

    Table  12.   Comparison of ballistic limit calculated by formula (1) and formula (12)

    钨球规格vbl/(m·s−1相对误差/%
    式(1)式(12)
    质量0.17 g/直径2.6 mm742.3738.1−0.57
    质量0.21 g/直径2.8 mm692.9697.4 0.65
    质量0.44 g/直径3.6 mm570.1562.9−1.26
    下载: 导出CSV
  • [1] 程可. 轻武器杀伤元对明胶靶标侵彻的数值仿真研究[D]. 南京: 南京理工大学, 2012: 1−2.
    [2] 黄献聪. 军用防弹衣的性能需求与发展方向[C]// 2005现代服装纺织高科技发展研讨会论文集. 北京: 北京纺织工程学会, 2005: 421−427.
    [3] LIDÉN E, BERLIN R, JANZON B, et al. Some observations relating to behind-body armour blunt trauma effects caused by ballistic impact [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1988, 28(S1): 145–148. DOI: 10.1097/00005373-198801001-00029.
    [4] ROBERTS J C, O’CONNOR J V, WARD E E. Modeling the effect of nonpenetrating ballistic impact as a means of detecting behind-armor blunt trauma [J]. Journal of Trauma: Injury, Infection, and Critical Care, 2005, 58(6): 1241–1251. DOI: 10.1097/01.TA.0000169805.81214.DC.
    [5] ROBERTS J C, MERKLE A C, BIERMANN P J, et al. Computational and experimental models of the human torso for non-penetrating ballistic impact [J]. Journal of Biomechanics, 2007, 40(1): 125–136. DOI: 10.1016/j.jbiomech.2005.11.003.
    [6] MERKLE A C, WARD E E, O’CONNOR J V, et al. Assessing behind armor blunt trauma (BABT) under NIJ Standard-0101.04 conditions using human torso models [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2008, 64(6): 1555–1561. DOI: 10.1097/TA.0b013e318160ff3a.
    [7] GILSON L, RABET L, IMAD A, et al. Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatine [J]. International Journal of Impact Engineering, 2020, 136: 103417. DOI: 10.1016/j.ijimpeng.2019.103417.
    [8] 董萍, 陈菁, 张启宽, 等. 利用有限元研究非贯穿弹道冲击防弹衣后人体躯干的力学响应 [J]. 医用生物力学, 2012, 27(3): 270–275. DOI: 10.16156/j.1004-7220.2012.03.013.

    DONG P, CHEN J, ZHANG Q K, et al. Finite element analysis on mechanical responses of human torso with body armor to non-penetrating ballistic impact [J]. Journal of Medical Biomechanics, 2012, 27(3): 270–275. DOI: 10.16156/j.1004-7220.2012.03.013.
    [9] 韩瑞国, 金永喜, 卢海涛, 等. 步枪弹对带软硬复合防护明胶靶标的侵彻机制研究 [J]. 兵工学报, 2019, 40(10): 1995–2004. DOI: 10.3969/j.issn.1000-1093.2019.10.004.

    HAN R G, JIN Y X, LU H T, et al. Investigation into the penetrating mechanism of rifle bullet against the gelatin target with soft/hard composite armor [J]. Acta Armamentarii, 2019, 40(10): 1995–2004. DOI: 10.3969/j.issn.1000-1093.2019.10.004.
    [10] 刘坤, 吴志林, 宁建国, 等. 手枪弹对带软防护的明胶靶标侵彻机理与实验研究 [J]. 兵工学报, 2018, 39(1): 1–17. DOI: 10.3969/j.issn.1000-1093.2018.01.001.

    LIU K, WU Z L, NING J G, et al. Investigation on the mechanism and experiment of pistol cartridge penetrating into gelatin target with soft body armor [J]. Acta Armamentarii, 2018, 39(1): 1–17. DOI: 10.3969/j.issn.1000-1093.2018.01.001.
    [11] 黄拱武. 弹体撞击带纤维软防护明胶靶标的数值仿真研究[D]. 南京: 南京理工大学, 2013: 41−43.
    [12] 孙非, 马力, 朱一辉, 等. 手枪弹对带UHMWPE软防护明胶靶标冲击效应的数值分析 [J]. 振动与冲击, 2018, 37(13): 20–26. DOI: 10.13465/j.cnki.jvs.2018.13.004.

    SUN F, MA L, ZHU Y H, et al. Numerical analysis for impact effects of a pistol bullet on a gelatin target covered with UHMWPE fiber armor [J]. Journal of Vibration and Shock, 2018, 37(13): 20–26. DOI: 10.13465/j.cnki.jvs.2018.13.004.
    [13] 唐刘建, 温垚珂, 薛本源, 等. 手枪弹侵彻有防护仿生人体躯干靶标试验研究 [J]. 振动与冲击, 2019, 38(4): 245–249. DOI: 10.13465/j.cnki.jvs.2019.04.036.

    TANG L J, WEN Y K, XUE B Y, et al. Pistol bullet impact soft body armor covered bionic human torso [J]. Journal of Vibration and Shock, 2019, 38(4): 245–249. DOI: 10.13465/j.cnki.jvs.2019.04.036.
    [14] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. DOI: 10.1115/1.3636566.
    [15] 乔纳斯A·朱卡斯, NICHOLAS T, SWIFT H F, 等. 碰撞动力学[M]. 张志云, 丁世用, 魏传中, 译. 北京: 兵器工业出版社, 1989: 200−205.
    [16] 王雪, 智小琦, 徐锦波, 等. 球形破片侵彻多层板弹道极限的量纲分析 [J]. 高压物理学报, 2019, 33(6): 065102. DOI: 10.11858/gywlxb.20190757.

    WANG X, ZHI X Q, XU J B, et al. Dimensional analysis of ballistic limit of spherical fragments penetrating multi-layer plate [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065102. DOI: 10.11858/gywlxb.20190757.
    [17] CHANG F K, CHANG K Y. Post-failure analysis of bolted composite joints in tension or shear-out mode failure [J]. Journal of Composite Materials, 1987, 21(9): 809–833. DOI: 10.1177/002199838702100903.
    [18] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials, 1987, 21(9): 834–855. DOI: 10.1177/002199838702100904.
    [19] 胡年明, 陈长海, 侯海量, 等. 高速弹丸冲击下复合材料层合板损伤特性仿真研究 [J]. 兵器材料科学与工程, 2017, 40(3): 66–70. DOI: 10.14024/j.cnki.1004-244x.20170427.008.

    HU N M, CHEN C H, HOU H L, et al. Simulation on damage characteristic of composite laminates under high-velocity projectile impact [J]. Ordnance Material Science and Engineering, 2017, 40(3): 66–70. DOI: 10.14024/j.cnki.1004-244x.20170427.008.
    [20] 张建海. 攻坚弹药子弹弹道环境的初步试验研究与数值分析[D]. 南京: 南京理工大学, 2006: 24−25.
    [21] 景彤, 郭子云, 雷文星, 等. 步枪弹M855与M855A1的侵彻效能对比仿真 [J]. 弹箭与制导学报, 2018, 38(4): 45–48, 54. DOI: 10.15892/j.cnki.djzdxb.2018.04.011.

    JING T, GUO Z Y, LEI W X, et al. Simulation comparison of penetration efficiency of rifle projectile M855 and M855A1 [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(4): 45–48, 54. DOI: 10.15892/j.cnki.djzdxb.2018.04.011.
    [22] 刘国繁. 层合结构复合材料抗弹机理研究及模拟仿真[D]. 南京: 南京航空航天大学, 2015: 27−28.
    [23] 邓云飞, 袁家俊, 徐建新. 半球形头弹不同角度冲击下编织复合材料板的侵彻特性 [J]. 复合材料学报, 2018, 35(4): 843–849. DOI: 10.13801/j.cnki.fhclxb.20170704.002.

    DENG Y F, YUAN J J, XU J X. Penetration characteristics of woven composite laminates impacted by hemispherical-nosed projectiles at different angles [J]. Acta Materiae Compositae Sinica, 2018, 35(4): 843–849. DOI: 10.13801/j.cnki.fhclxb.20170704.002.
  • 加载中
图(13) / 表(12)
计量
  • 文章访问数:  546
  • HTML全文浏览量:  217
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2020-12-24
  • 网络出版日期:  2021-06-01
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回