气压对压力容器前壁超高速撞击损伤的影响

迟润强 段永攀 庞宝君 才源

迟润强, 段永攀, 庞宝君, 才源. 气压对压力容器前壁超高速撞击损伤的影响[J]. 爆炸与冲击, 2021, 41(2): 021404. doi: 10.11883/bzycj-2020-0310
引用本文: 迟润强, 段永攀, 庞宝君, 才源. 气压对压力容器前壁超高速撞击损伤的影响[J]. 爆炸与冲击, 2021, 41(2): 021404. doi: 10.11883/bzycj-2020-0310
CHI Runqiang, DUAN Yongpan, PANG Baojun, CAI Yuan. Effects of gas pressure on the front wall damage of pressure vessel impacted by hypervelocity projectile[J]. Explosion And Shock Waves, 2021, 41(2): 021404. doi: 10.11883/bzycj-2020-0310
Citation: CHI Runqiang, DUAN Yongpan, PANG Baojun, CAI Yuan. Effects of gas pressure on the front wall damage of pressure vessel impacted by hypervelocity projectile[J]. Explosion And Shock Waves, 2021, 41(2): 021404. doi: 10.11883/bzycj-2020-0310

气压对压力容器前壁超高速撞击损伤的影响

doi: 10.11883/bzycj-2020-0310
基金项目: 国家自然科学基金(11672097,11772113);国防科工局空间碎片专项(KJSP2016030101)
详细信息
    作者简介:

    迟润强(1979- ),男,博士,副教授,chirq@hit.edu.cn

    通讯作者:

    庞宝君(1963- ),男,博士,教授,pangbj@hit.edu.cn

  • 中图分类号: O389

Effects of gas pressure on the front wall damage of pressure vessel impacted by hypervelocity projectile

  • 摘要: 充气压力容器在超高速撞击下的典型损伤包括穿孔及其边缘的裂纹失稳破坏,会导致气体泄漏或爆炸,内压对容器前壁损伤的影响仍不明确。以不同内压的球形铝合金充气压力容器为研究对象,开展了球形铝合金弹丸超高速撞击实验和数值模拟计算,分析了内充气体压强对前壁穿孔形貌特征、穿孔直径、孔边环向应力等的影响规律和影响机理,讨论了气体冲击波的传播行为及影响前壁穿孔边缘裂纹失稳破坏的机制。结果表明:前壁穿孔边缘内翻边形貌与内压相关,内压越高,弯折程度越轻;穿孔直径与内充气体压强正相关,但气体对孔径的影响远小于容器壁厚及撞击速度的影响;穿孔边缘使裂纹失稳破坏的环向拉应力不仅受到后壁反射冲击波的影响,也与容器壁内应力波的传播有关,与内压成正比。
  • 图  1  实验布置示意图

    Figure  1.  Schematic diagram of experimental setup

    图  2  球形压力容器

    Figure  2.  Spherical pressure vessel

    图  3  二维轴对称模型局部

    Figure  3.  Local domain of two-dimensional axisymmetric numerical model

    图  4  压力容器模型A

    Figure  4.  Numerical model A of pressure vessel

    图  5  球形压力容器壁中最大主应力时程曲线

    Figure  5.  Evolution of maximum principle stress on the spherical vessel wall

    图  6  压力容器模型B

    Figure  6.  Numerical model B of pressure vessel

    图  7  容器前壁穿孔外侧正视图

    Figure  7.  Photographs of holes shown from the impacted side of the front vessel wall

    图  8  容器前壁穿孔直径实验与数值模拟结果

    Figure  8.  Experimental and numerical hole diameters

    图  9  容器前壁穿孔截面

    Figure  9.  Cross sections of holes in front vessel walls

    图  10  内翻角θ随内压p0的变化

    Figure  10.  Variations of θ with p0

    图  11  CI系列数值模拟穿孔截面

    Figure  11.  Cross section of holes in the numerical simulations using a series of CI models

    图  12  CI系列数值模拟穿孔内翻角θ随内压p0的变化

    Figure  12.  Variations of θ with p0 in the numerical simulationsbased on the CI models

    图  13  3种数值模型内翻边形貌比较(v0=3.00 km/s, p0=6.0 MPa, t=15 μs)

    Figure  13.  Comparison on inner flanging morphology among three typesof numerical model (v0=3.00 km/s, p0=6.0 MPa, t=15 μs)

    图  14  CI系列数值模拟穿孔直径dh随内压p0的变化

    Figure  14.  Variations of dh with p0 in the numerical simulations based on the CI models

    图  15  CI系列数值模拟中Δdh随内压p0的变化

    Figure  15.  Variations of Δdh with p0 in the numerical simulations based on the CI models

    图  16  穿孔直径dh的时间历程曲线(v0=3.00 km/s,p0=6.0 MPa)

    Figure  16.  Variations of dh with time (v0=3.00 km/s, p0=6.0 MPa)

    图  17  气体冲击波运动过程(p0=3.0 MPa, v0=3.00 km/s)

    Figure  17.  Shock wave propagation in the gas (p0=3.0 MPa, v0=3.00 km/s)

    图  18  环向应力${\sigma _{\rm{h}}}$的时间历程曲线

    Figure  18.  Variation of ${\sigma _{\rm{h}}}$ with time

    图  19  不同撞击速度和内压下的最大环向应力$\sigma _{{\rm{h}},\,{\max }}$

    Figure  19.  Variation of $\sigma _{{\rm{h}},\,{\max }}$ with impact velocityand initial pressure in the vessel

    表  1  实验参数

    Table  1.   Experimental parameters

    实验容器内压/MPa容器壁厚/mm撞击速度/(km·s−1
    P02<10−42.543.66
    P032.22.403.47
    P041.02.543.52
    P052.02.403.55
    下载: 导出CSV
  • [1] SCHÄFER F. Hypervelocity impact testing, impacts on pressure vessels: EMI I-27/01 [R]. Germany: Ernst-Mach Institute, 2001.
    [2] SCHÄFER F, SCHNEIDER E, LAMBERT M. Impact fragment cloud propagation a pressure vessel [J]. Acta Astronautica, 1997, 39(1): 31–40. DOI: 10.1016/S0094-5765(97)00021-0.
    [3] 张永, 霍玉华, 韩增尧, 等. 卫星高压气瓶的超高速撞击试验 [J]. 中国空间科学技术, 2009, 29(1): 56–61. DOI: 10.3321/j.issn:1000-758X.2009.01.010.

    ZHANG Y, HUO Y H, HAN Z Y, et al. Experiment of gas-filled pressure vessel under hypervelocity normal impact [J]. Chinese Space Science and Technology, 2009, 29(1): 56–61. DOI: 10.3321/j.issn:1000-758X.2009.01.010.
    [4] 周广东, 贾光辉, 泉浩芳. 空间碎片撞击气瓶穿孔孔径预测公式研究 [J]. 航天器环境工程, 2011, 28(1): 11–14. DOI: 10.3969/j.issn.1673-1379.2011.01.002.

    ZHOU G D, JIA G H, QUAN H F. The penetration hole size prediction for pressure vessel under impact of space debris [J]. Spacecraft Environment Engineering, 2011, 28(1): 11–14. DOI: 10.3969/j.issn.1673-1379.2011.01.002.
    [5] 庞宝君, 盖芳芳, 管公顺. 高速撞击充气压力容器前壁损伤数值模拟 [J]. 中国空间科学技术, 2010, 30(4): 76–82.

    PANG B J, GAI F F, GUAN G S. Numerical simulation on the damage of front side of gas-filled pressure vessels due to hypervelocity impact [J]. China Space Science and Technology, 2010, 30(4): 76–82.
    [6] IGOR Y T, SCHÄFER F. Analysis of the fracture of gas-filled pressure vessels under hypervelocity impact [J]. International Journal of Impact Engineering, 1999, 23: 905–919. DOI: 10.1016/S0734-743X(99)00134-7.
    [7] SMIRNOV N N, KISELEV A B, NIKITIN V F. Fragmentations caused by hypervelocity collisions of debris particles with pressurized vessels [C]// Proceeding of the 3rd European Conference on Space Debris. Darmstadt, Germany: ESOC, 2001: 615–620.
    [8] 盖芳芳. 空间碎片超高速撞击下充气压力容器破损预报 [D]. 哈尔滨: 哈尔滨工业大学, 2010: 24–28.

    GAI F F. Prediction of damage and failure of gas-filled pressure vessels under space debris hypervelocity impact [D]. Harbin: Harbin Institute of Technology, 2010: 24–28.
    [9] Autodyn user’s manual revision 6.0 [S]. Concord, USA: Century Dynamics Incorporated, 2005.
    [10] 张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000: 110–111.
    [11] PIEKUTOWSKI A J. Formation and description of debris cloud produced by hypervelocity impact: NASA CR-4707 [R]. USA: Marshall Space Flight Center, 1996.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  601
  • HTML全文浏览量:  249
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2020-09-10
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回