Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

气压对压力容器前壁超高速撞击损伤的影响

迟润强 段永攀 庞宝君 才源

爆炸生物伤专刊简介[J]. 爆炸与冲击, 2024, 44(12): 121401. doi: 10.11883/bzycj-2024-0423
引用本文: 迟润强, 段永攀, 庞宝君, 才源. 气压对压力容器前壁超高速撞击损伤的影响[J]. 爆炸与冲击, 2021, 41(2): 021404. doi: 10.11883/bzycj-2020-0310
CHI Runqiang, DUAN Yongpan, PANG Baojun, CAI Yuan. Effects of gas pressure on the front wall damage of pressure vessel impacted by hypervelocity projectile[J]. Explosion And Shock Waves, 2021, 41(2): 021404. doi: 10.11883/bzycj-2020-0310
Citation: CHI Runqiang, DUAN Yongpan, PANG Baojun, CAI Yuan. Effects of gas pressure on the front wall damage of pressure vessel impacted by hypervelocity projectile[J]. Explosion And Shock Waves, 2021, 41(2): 021404. doi: 10.11883/bzycj-2020-0310

气压对压力容器前壁超高速撞击损伤的影响

doi: 10.11883/bzycj-2020-0310
基金项目: 国家自然科学基金(11672097,11772113);国防科工局空间碎片专项(KJSP2016030101)
详细信息
    作者简介:

    迟润强(1979- ),男,博士,副教授,chirq@hit.edu.cn

    通讯作者:

    庞宝君(1963- ),男,博士,教授,pangbj@hit.edu.cn

  • 中图分类号: O389

Effects of gas pressure on the front wall damage of pressure vessel impacted by hypervelocity projectile

  • 摘要: 充气压力容器在超高速撞击下的典型损伤包括穿孔及其边缘的裂纹失稳破坏,会导致气体泄漏或爆炸,内压对容器前壁损伤的影响仍不明确。以不同内压的球形铝合金充气压力容器为研究对象,开展了球形铝合金弹丸超高速撞击实验和数值模拟计算,分析了内充气体压强对前壁穿孔形貌特征、穿孔直径、孔边环向应力等的影响规律和影响机理,讨论了气体冲击波的传播行为及影响前壁穿孔边缘裂纹失稳破坏的机制。结果表明:前壁穿孔边缘内翻边形貌与内压相关,内压越高,弯折程度越轻;穿孔直径与内充气体压强正相关,但气体对孔径的影响远小于容器壁厚及撞击速度的影响;穿孔边缘使裂纹失稳破坏的环向拉应力不仅受到后壁反射冲击波的影响,也与容器壁内应力波的传播有关,与内压成正比。
  • 人体内肺、脑等组织和器官中含有较多空腔与气、液,是爆炸冲击波重要的致伤靶器官,可导致肺损伤和创伤性脑损伤(traumatic brain injury,TBI)。典型的爆炸冲击波作用时间为2~10 ms,超压峰值在10~500 kPa之间,波的频率分布范围为10~1000 Hz,其特点是频段宽、作用时间短,压力骤然升高,可造成周围材料的剧烈破坏。爆炸冲击波具有无孔不入的特点,即使穿戴头盔,也会因头盔不能有效抵御、减缓冲击波,盔内出现冲击波反射叠加,而导致士兵受到颅脑爆炸伤的威胁。

    颅脑爆震伤已成为“现代战争的标签损伤”。 根据美国TBI中心(TBICoE)的最新报告,从2000年到2020年,有超过43万的美国军人被诊断为颅脑爆震伤,它是造成士兵死亡的重要原因之一。针对退伍军人的流行病学研究显示,颅脑爆震伤是导致创伤后应激障碍(post-traumatic stress disorders,PTSD)发生的主要原因,显著影响幸存者的认知行为和身心健康,而其带来的药物滥用、暴力伤人、焦虑、失忆、暴躁、抑郁、帕金森、自杀等社会问题,已经引起全球范围的广泛关注。此外,国内发生的重大爆炸事故也导致幸存者和消防人员患有PTSD等典型的颅脑爆震伤后遗症,严重威胁了民众的生命健康安全。因此,研究颅脑爆震伤在军事和民事领域都具有重要意义。

    理论与实验研究表明:对中、重度超压冲击波生物致伤以防为主。目前,对肺部爆炸冲击伤机理和伤情评估研究得比较充分,从肺部出血点的面积建立定量的评分标准。然而,颅脑爆震伤是涉及跨空间和时间尺度的复杂科学问题:从空间尺度,涉及到爆炸场景的米量级、头部和大脑的厘米量级、神经细胞的微米量级和蛋白质分子等生物标记物的纳米量级;从时间尺度,涉及到爆炸波产生的微秒量级和脑生物力学响应的毫秒量级,以及神经元继发性损伤和修复的分钟/小时/日/周量级。同时,颅脑爆震伤还涉及脑细胞、轴突、轴索组织的极软材料损伤断裂行为,以及多层级颅骨衰减和耗散冲击波的力学性能等。研究问题的瓶颈是冲击波-装备-人体作用规律复杂,缺少有效的评估方法和测试技术;超压峰值低,现有防弹材料的耗能机制难以发挥作用;均质材料的装备难以有效衰减和耗散宽波长冲击波能量。因此,亟需开展冲击动力学、军事医学和装备防护学的多学科交叉研究,解决爆炸冲击波颅脑致伤机制与防护的关键科学技术问题。

    本期专刊共刊载3篇综述和11篇研究论文,内容涉及冲击动力学理论和数值仿真模型、外场实爆动物致伤试验、激波管模拟爆炸动物致伤试验、模拟假人爆炸试验、防护装备验证试验、军事医学的相关生物试验、病理学和行为学研究,以及临床诊治方案等,汇集了近5年国内爆炸冲击伤的部分研究成果。

    清华大学 庄茁教授 空军军医大学 费舟教授

  • 图  1  实验布置示意图

    Figure  1.  Schematic diagram of experimental setup

    图  2  球形压力容器

    Figure  2.  Spherical pressure vessel

    图  3  二维轴对称模型局部

    Figure  3.  Local domain of two-dimensional axisymmetric numerical model

    图  4  压力容器模型A

    Figure  4.  Numerical model A of pressure vessel

    图  5  球形压力容器壁中最大主应力时程曲线

    Figure  5.  Evolution of maximum principle stress on the spherical vessel wall

    图  6  压力容器模型B

    Figure  6.  Numerical model B of pressure vessel

    图  7  容器前壁穿孔外侧正视图

    Figure  7.  Photographs of holes shown from the impacted side of the front vessel wall

    图  8  容器前壁穿孔直径实验与数值模拟结果

    Figure  8.  Experimental and numerical hole diameters

    图  9  容器前壁穿孔截面

    Figure  9.  Cross sections of holes in front vessel walls

    图  10  内翻角θ随内压p0的变化

    Figure  10.  Variations of θ with p0

    图  11  CI系列数值模拟穿孔截面

    Figure  11.  Cross section of holes in the numerical simulations using a series of CI models

    图  12  CI系列数值模拟穿孔内翻角θ随内压p0的变化

    Figure  12.  Variations of θ with p0 in the numerical simulationsbased on the CI models

    图  13  3种数值模型内翻边形貌比较(v0=3.00 km/s, p0=6.0 MPa, t=15 μs)

    Figure  13.  Comparison on inner flanging morphology among three typesof numerical model (v0=3.00 km/s, p0=6.0 MPa, t=15 μs)

    图  14  CI系列数值模拟穿孔直径dh随内压p0的变化

    Figure  14.  Variations of dh with p0 in the numerical simulations based on the CI models

    图  15  CI系列数值模拟中Δdh随内压p0的变化

    Figure  15.  Variations of Δdh with p0 in the numerical simulations based on the CI models

    图  16  穿孔直径dh的时间历程曲线(v0=3.00 km/s,p0=6.0 MPa)

    Figure  16.  Variations of dh with time (v0=3.00 km/s, p0=6.0 MPa)

    图  17  气体冲击波运动过程(p0=3.0 MPa, v0=3.00 km/s)

    Figure  17.  Shock wave propagation in the gas (p0=3.0 MPa, v0=3.00 km/s)

    图  18  环向应力σh的时间历程曲线

    Figure  18.  Variation of σh with time

    图  19  不同撞击速度和内压下的最大环向应力σh,max

    Figure  19.  Variation of σh,max with impact velocityand initial pressure in the vessel

    表  1  实验参数

    Table  1.   Experimental parameters

    实验容器内压/MPa容器壁厚/mm撞击速度/(km·s−1
    P02<10−42.543.66
    P032.22.403.47
    P041.02.543.52
    P052.02.403.55
    下载: 导出CSV
  • [1] SCHÄFER F. Hypervelocity impact testing, impacts on pressure vessels: EMI I-27/01 [R]. Germany: Ernst-Mach Institute, 2001.
    [2] SCHÄFER F, SCHNEIDER E, LAMBERT M. Impact fragment cloud propagation a pressure vessel [J]. Acta Astronautica, 1997, 39(1): 31–40. DOI: 10.1016/S0094-5765(97)00021-0.
    [3] 张永, 霍玉华, 韩增尧, 等. 卫星高压气瓶的超高速撞击试验 [J]. 中国空间科学技术, 2009, 29(1): 56–61. DOI: 10.3321/j.issn:1000-758X.2009.01.010.

    ZHANG Y, HUO Y H, HAN Z Y, et al. Experiment of gas-filled pressure vessel under hypervelocity normal impact [J]. Chinese Space Science and Technology, 2009, 29(1): 56–61. DOI: 10.3321/j.issn:1000-758X.2009.01.010.
    [4] 周广东, 贾光辉, 泉浩芳. 空间碎片撞击气瓶穿孔孔径预测公式研究 [J]. 航天器环境工程, 2011, 28(1): 11–14. DOI: 10.3969/j.issn.1673-1379.2011.01.002.

    ZHOU G D, JIA G H, QUAN H F. The penetration hole size prediction for pressure vessel under impact of space debris [J]. Spacecraft Environment Engineering, 2011, 28(1): 11–14. DOI: 10.3969/j.issn.1673-1379.2011.01.002.
    [5] 庞宝君, 盖芳芳, 管公顺. 高速撞击充气压力容器前壁损伤数值模拟 [J]. 中国空间科学技术, 2010, 30(4): 76–82.

    PANG B J, GAI F F, GUAN G S. Numerical simulation on the damage of front side of gas-filled pressure vessels due to hypervelocity impact [J]. China Space Science and Technology, 2010, 30(4): 76–82.
    [6] IGOR Y T, SCHÄFER F. Analysis of the fracture of gas-filled pressure vessels under hypervelocity impact [J]. International Journal of Impact Engineering, 1999, 23: 905–919. DOI: 10.1016/S0734-743X(99)00134-7.
    [7] SMIRNOV N N, KISELEV A B, NIKITIN V F. Fragmentations caused by hypervelocity collisions of debris particles with pressurized vessels [C]// Proceeding of the 3rd European Conference on Space Debris. Darmstadt, Germany: ESOC, 2001: 615–620.
    [8] 盖芳芳. 空间碎片超高速撞击下充气压力容器破损预报 [D]. 哈尔滨: 哈尔滨工业大学, 2010: 24–28.

    GAI F F. Prediction of damage and failure of gas-filled pressure vessels under space debris hypervelocity impact [D]. Harbin: Harbin Institute of Technology, 2010: 24–28.
    [9] Autodyn user’s manual revision 6.0 [S]. Concord, USA: Century Dynamics Incorporated, 2005.
    [10] 张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000: 110–111.
    [11] PIEKUTOWSKI A J. Formation and description of debris cloud produced by hypervelocity impact: NASA CR-4707 [R]. USA: Marshall Space Flight Center, 1996.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  719
  • HTML全文浏览量:  313
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2020-09-10
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回