Shock wave characteristics in a conical water explosion shock tube under cylindrical charge condition
-
摘要: 锥形水中爆炸激波管是进行水中爆炸实验的一种装置,该装置能够通过较小装药量在相同距离处实现自由场水中较大装药量爆炸的冲击波峰值。为了获得柱形装药条件下锥形水中爆炸激波管内的冲击波特性,本文通过数值计算的方式,对不同圆锥角和不同柱形装药质量下锥形激波管内的冲击波传播过程进行了模拟,通过对不同工况下激波管内冲击波特性进行分析,发现其初始冲击波的衰减规律符合自由场水中的指数衰减形式,并拟合得到了与自由场水中爆炸相容的冲击波峰值、比冲量和能流密度经验公式;发现其二次脉动压力周期与炸药质量呈反常规的变化规律,并引入等效静水压深度解释了这一现象;发现其二次脉动压力幅值与初始冲击波幅值之比比自由场水中更大,而二次脉动压力的比冲量与初始冲击波冲量之比与自由场水中相当。Abstract: A conical shock tube is a kind of underwater explosive devices which uses small conical explosive charge to form high intensity shock pressure. Theoretically, the shock wave pressure in the conical shock tube is the same as that generated by a virtual spherical explosive charge in free field water. However, considering the effect of practical factors, the characteristics of shock wave in the actual device and the theoretical device are different to some extent. In order to investigate the shock wave characteristics in the conical water explosion shock tube under a cylindrical charge condition, and to obtain the variation rules of the peak pressure value, the specific impulse and the energy flux density, a series of numerical calculations with different cone angles and different quality of cylindrical charges were conducted. The reliability of the simulation methods was verified by comparing with the published experimental data. Through the analysis of the pressure data obtained by the validated simulation method, it is found that the shock wave in the tube follows the same scaling law as it is in the free field underwater explosion. The constants k and n of the empirical expressions for peak pressure, the impulse and the energy flux density for the shock wave in shock tube are obtained by data fitting. Furthermore, the relationships among the coefficient k, index n and cone angle α were deduced, and the result shows that the coefficients k have well linear relationship with constructed angle coefficient β, and the indexes n can be quantitatively expressed by cone angle α. Regarding the free field as a special case with a cone angle of 360°, it’s constants k and n also conform to the obtained relationships. It is also found that the secondary pulsation pressure period shows an anomalous change rule with explosive mass, which can be well explained by the significant increasement of the equivalent hydrostatic pressure depth. The ratio between the secondary impulse pressure peak and initial pressure peak is bigger than that in free field while the ratio between the secondary impulse pressure’s impulse to the initial pressure impulse is almost the same. These results can provide support for the application of conical shock tubes.
-
Key words:
- underwater explosion /
- conical shock tube /
- shock wave /
- secondary impulse
-
表 1 TNT的JWL状态方程参数
Table 1. The JWL EOS parameters for TNT
参数 A/GPa B/Pa R1 R1 ω 取值 373.8 374.7 4.15 0.9 0.35 表 2 水的状态方程参数
Table 2. The EOS parameters for water
ρ0/(kg·m−3) A1/GPa A2/GPa A3/GPa B0 B1 T1/GPa T2/Pa 1×103 2.2 9.54 14.57 0.28 0.28 2.2 0 表 3 4340钢的基本参数
Table 3. Basic parameters for 4340 steel
参数 ρ/(kg·m−3) E/Pa ν As/Pa Bs/Pa ns C ms 取值 7.83×103 2.0×1011 0.29 7.92×108 5.10×108 0.26 0.014 1.03 注:ν为泊松比,E为弹性模量. 表 4 基于数值模拟结果拟合得到的初始冲击波压力峰值、比冲量和能流密度曲线方程的参数及决定系数
Table 4. Parameters and determination coefficient of fitting curve Eq. for simulational results of maximum pressure, specific impulse and energy flow density
α kp np R2 (pm) ki/105 ni R2 (i) ke/105 ne R2 (e) 4° 864.04 1.13 0.9793 2.99 0.464 0.9567 581 1.62 0.9978 6° 647.76 1.13 0.9847 2.22 0.476 0.9183 349 1.69 0.9980 8° 517.21 1.13 0.9807 1.73 0.490 0.9380 242 1.79 0.9988 10° 430.14 1.13 0.9741 1.59 0.583 0.9474 181 1.86 0.9992 360°[16] 52.16 1.13 0.0058 0.891 0.98 2.10 表 5 二次脉动压力幅值与初始冲击波幅值之比
Table 5. The secondary impulse pressure peak to the initial shock pressure peak ratio
(R·m−1/3)/(m·kg−1/3) p2m/pm α=4° α=6° α=8° α=10° 1.84 0.14 0.18 0.22 0.19 1.46 0.21 0.24 0.29 0.24 1.28 0.26 0.33 0.21 0.19 平均 0.20 0.25 0.24 0.21 表 6 二次脉动压力的正冲量与初始冲击波冲量之比
Table 6. The secondary impulse pressure’s impulse to the initial shock pressure impulse ratio
(R·m−1/3)/(m·kg−1/3) i2/i1 α=4° α=6° α=8° α=10° 1.84 3.57 3.75 3.45 3.29 1.46 3.80 3.74 4.05 3.38 1.28 3.57 4.03 4.00 3.69 平均 3.65 3.84 3.83 3.45 表 7 冲击波峰值、比冲量和能流密度经验公式及其系数
Table 7. Constants of empirical expressions for peak pressure, the impulse and the energy flux density
目标物理量 表达式 系数表达式 指数表达式 角度系数 pm (MPa) pm=kp$(m^{1/3}/R)^{n_{ {p} }} $ kp =38.35βp+13.81 np=1.13 βp=$\eta^{n_{ {p} }/3}$ I (Pa·s) I/m1/3=ki$(m^{1/3}/R)^{n_{ {i} }} $ ki =5923.5βi−163.5 ni=0.46−0.432×0.9974η βi=$\eta ^{(1+n_{ {i} })/3}$ E (Pa·m) E/m1/3=ke$(m^{1/3}/R)^{n_{ {e} }} $ ke =49279βe+48721 ne=1.61−0.491×0.9988η βe=$\eta^{ (1+n_{ {e} })/3}$ -
[1] RAMAJEYATHILAGAM K, VENDHAN C P. Deformation and rupture of thin rectangular plates subjected to underwater shock [J]. International Journal of Impact Engineering, 2004, 30(6): 699–719. DOI: 10.1016/j.ijimpeng.2003.01.001. [2] HUNG C F, HSU P Y, HWANG-FUU J J. Elastic shock response of an air-backed plate to underwater explosion [J]. International Journal of Impact Engineering, 2005, 31(2): 151–168. DOI: 10.1016/j.ijimpeng.2003.10.039. [3] 汪斌, 张远平, 王彦平. 水中爆炸气泡脉动现象的实验研究 [J]. 爆炸与冲击, 2008, 28(6): 572–576. DOI: 10.11883/1001-1455(2008)06-0572-05.WANG B, ZHANG Y P, WANG Y P. Experimental study on bubble oscillation formed during underwater explosions [J]. Explosion and Shock Waves, 2008, 28(6): 572–576. DOI: 10.11883/1001-1455(2008)06-0572-05. [4] 朱凌, 段沐德, 黄骏德. 固支方板对水下爆炸的塑性动力响应 [J]. 海军工程大学学报, 1987(3): 1009–3486. [5] LEE J J, SMITH M J, HUANG J, et al. Deformation and rupture of thin steel plates due to cumulative loading from underwater shock and bubble collapse [J]. Shock and Vibration, 2011, 18(3): 459–470. DOI: 10.3233/SAV-2010-0526. [6] 郑监, 卢芳云, 李翔宇. 金属板在水下爆炸加载下的动态响应研究进展 [J]. 中国测试, 2018, 44(10): 20–30. DOI: 10.11857/j.issn.1674-5124.2018.10.004.ZHENG J, LU F Y, LI X Y. Research progress on dynamic response of metal plate in underwater explosion loading [J]. China Measurement & Test, 2018, 44(10): 20–30. DOI: 10.11857/j.issn.1674-5124.2018.10.004. [7] 张效慈. 水下爆炸试验相似准则 [J]. 船舶力学, 2007, 11(1): 108–118. DOI: 10.3969/j.issn.1007-7294.2007.01.014.ZHANG X C. Similarity criteria for experiment of underwater explosion [J]. Journal of Ship Mechanics, 2007, 11(1): 108–118. DOI: 10.3969/j.issn.1007-7294.2007.01.014. [8] LEBLANC J, GARDNER N, SHUKLA A. Effect of polyurea coatings on the response of curved E-Glass/Vinyl ester composite panels to underwater explosive loading [J]. Composites Part B: Engineering, 2013, 44(1): 565–574. DOI: 10.1016/j.compositesb.2012.02.038. [9] LEBLANC J, SHUKLA A. Dynamic response of curved composite panels to underwater explosive loading: experimental and computational comparisons [J]. Composite Structures, 2011, 93(11): 3072–3081. DOI: 10.1016/j.compstruct.2011.04.017. [10] LEBLANC J, SHUKLA A. Response of E-glass/vinyl ester composite panels to underwater explosive loading: effects of laminate modifications [J]. International Journal of Impact Engineering, 2011, 38(10): 796–803. DOI: 10.1016/j.ijimpeng.2011.05.004. [11] DESHPANDE V S, HEAVER A, FLECK N A. An underwater shock simulator [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021–1041. DOI: 10.1098/rspa.2005.1604. [12] ESPINOSA H D, LEE S, MOLDOVAN N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading [J]. Experimental Mechanics, 2006, 46(6): 805–824. DOI: 10.1007/s11340-006-0296-7. [13] FILLER W S. Propagation of shock waves in a hydrodynamic conical shock tube [J]. The Physics of Fluids, 1964, 7(5): 664–667. DOI: 10.1063/1.1711266. [14] ZALESAK J F, POCHÉ JR L B. The shock test facility: an explosive-driven, water-filled conical shock tube [C]// Proceedings of a Conference Sponsored by the Department of Defense, the National Aeronautics and Space Administration, and the Department of Energy. Virginia Beach, 1989: 73−76. [15] HESHMATI M, ZAMANI J, MOZAFARI A. The experimental and numerical impacts of geometrical parameters of conical shock tube on the function, maximum pressure and generative impulses to expose equivalent mass and behavioral equation [J]. Materials Science & Engineering Technology, 2016, 47(7): 623–634. DOI: 10.1002/mawe.201600510. [16] BJØRNØ L, LEVIN P. Underwater explosion research using small amounts of chemical explosives [J]. Ultrasonics, 1976, 14(6): 263–267. DOI: 10.1016/0041-624X(76)90033-0. [17] 库尔 P. 水下爆炸[M]. 罗耀杰, 韩润泽, 官信, 等, 译. 北京: 国防工业出版社, 1960: 167−168; 219. [18] KEIL A H. The response of ships to underwater explosions [R]. New York: Society of Naval Architects and Marine Engineers, 1961: 43.