金属梁在预应力下的冲击响应

郑监 卢芳云

郑监, 卢芳云. 金属梁在预应力下的冲击响应[J]. 爆炸与冲击, 2021, 41(3): 031401. doi: 10.11883/bzycj-2020-0328
引用本文: 郑监, 卢芳云. 金属梁在预应力下的冲击响应[J]. 爆炸与冲击, 2021, 41(3): 031401. doi: 10.11883/bzycj-2020-0328
ZHENG Jian, LU Fangyun. On impact response of a prestressed metal beam[J]. Explosion And Shock Waves, 2021, 41(3): 031401. doi: 10.11883/bzycj-2020-0328
Citation: ZHENG Jian, LU Fangyun. On impact response of a prestressed metal beam[J]. Explosion And Shock Waves, 2021, 41(3): 031401. doi: 10.11883/bzycj-2020-0328

金属梁在预应力下的冲击响应

doi: 10.11883/bzycj-2020-0328
基金项目: 国家自然科学基金(11872376)
详细信息
    作者简介:

    郑 监(1993- ),男,博士研究生,zhengjian14@nudt.edu.cn

    通讯作者:

    卢芳云(1963- ),女,博士,教授,博士生导师,fylu@nudt.edu.cn

  • 中图分类号: O348

On impact response of a prestressed metal beam

  • 摘要: 工程结构在使用过程中,大部分构件处于预应力状态。为了理清预应力对金属梁在冲击载荷作用下响应的影响机理,对不同轴向预应力条件和不同冲击强度下金属梁的塑性变形规律进行了研究。通过自主设计的预应力加载装置和落锤试验机,实现对金属梁的预应力控制和冲击加载;借助商用软件建立数值模型,对相关工况进行模拟。数值模拟结果与试验结果有较好的一致性。通过对梁的剩余挠度进行对比发现,压预应力状态下的梁受冲击载荷作用所产生的中点剩余挠度会比无预应力时更大;而拉预应力状态下的梁,挠度的变化量与预应力之间没有较一致的规律。从能量角度进行分析发现,梁的塑性变形能来自外加动能和初始内能,外加动能的能量比越高,梁的能量吸收率就越高,且在低能量比时,压预应力下的能量吸收率相对较高,拉预应力下的相对较低;高能量比时,预应力对能量吸收率几乎无影响。压预应力下,梁的极限弯矩增大,长度缩小,增大了的塑性变形能分布在长度缩小了的梁内,必然会导致更大的剩余挠度;拉预应力下,梁的极限弯矩减小,长度增大,增大了的塑性变形能分布在长度增大了的梁内,剩余挠度则没有显而易见的规律。这在一定程度上解释了预应力对冲击载荷作用下金属梁变形的影响机理。
  • 图  1  轴向预应力条件下的梁受到横向冲击载荷的示意图

    Figure  1.  Schematic diagram of an axially-prestressed beam subjected to transverse impact load

    图  2  预应力加载原理

    Figure  2.  Principle of prestress loading

    图  3  落锤加载示意图

    Figure  3.  Schematic diagram of drop-weight loading

    图  4  梁构件结构和尺寸

    Figure  4.  Structure and size of the beam

    图  5  不同落锤高度下梁的变形结果

    Figure  5.  Final shapes of the beams under different drop-weight heights

    图  6  模拟模型示意图

    Figure  6.  Schematic diagram of the simulation model

    图  7  梁内各点的轴向应力变化过程

    Figure  7.  Change of axial stress at each point of the beam

    图  8  落锤在撞击梁的过程中位移和速度的变化

    Figure  8.  Changes of displacement and velocity of the drop hammer during it impacting the beam

    图  9  梁的变形特征

    Figure  9.  Deformation characteristics in the beam

    图  10  梁中点的剩余挠度随落锤初始动量的变化

    Figure  10.  Change of the residual deflection at the middle point of the beam with the initial momentum of the drop hammer

    图  11  100 MPa压预应力梁在落锤以2 m/s初始速度撞击下的响应过程

    Figure  11.  Response process of the beam with the compressive prestress of 100 MPa under the impact of the drop hammer with the initial impact velocity of 2 m/s

    图  12  不同工况下梁的中点剩余挠度

    Figure  12.  Residual deflections of the middle points of the beams under different conditions

    图  13  不同外加动能下梁的能量吸收率

    Figure  13.  Energy absorption ratios of the beams at different external kinetic energy ratios

    图  14  不同初始预应力下梁的初始内能和吸收的总能量

    Figure  14.  Total absorbed energies and initial energies of the beams with different prestresses

    表  1  落锤试验的工况

    Table  1.   Conditions of drop-weight tests

    工况H/cmΔU/mV
    1 50 0
    2100 0
    3150 0
    4200 0
    5100−310
    6100−410
    7100 350
    8100 450
    下载: 导出CSV

    表  2  不同试验工况下梁中点的剩余挠度

    Table  2.   Residual deflections at the middle points of the beams under different test conditions

    工况H/cm${v_0}$/(m·s−1)ΔU/mV$\sigma _\alpha$/MPaW/mm
    1 503.13 0 0 5.06
    21004.43 0 0 9.71
    31505.42 0 012.66
    42006.26 0 016.96
    51004.43−310−44 9.78
    61004.43−410−5810.48
    71004.43 350 36 9.70
    81004.43 450 63 8.90
    下载: 导出CSV

    表  3  材料的基本参数

    Table  3.   Basic parameters for selected materials

    材料ρ0/(kg·m−3)E/GPaµAs/MPaBs/MPansCms
    7.896×1032110.293502750.360.0221.00
    2.77×103 730.333373430.410.01 1.00
    下载: 导出CSV
  • [1] MENKES S B, OPAT H J. Broken beams: tearing and shear failures in explosively loaded clamped beams [J]. Experimental Mechanics, 1973, 13(11): 480–486. DOI: 10.1007/BF02322734.
    [2] JONES N. Plastic failure of ductile beams loaded dynamically [J]. Journal of Engineering for Industry, 1976, 98(1): 131–136. DOI: 10.1115/1.3438805.
    [3] LIU J H, JONES N. Experimental investigation of clamped beams struck transversely by a mass [J]. International Journal of Impact Engineering, 1987, 6(4): 303–335. DOI: 10.1016/0734-743X(87)90097-2.
    [4] YAKOV B H. Failure of an axially compressed beam with uncertain initial deflection of bounded strain energy [J]. International Journal of Engineering Science, 1993, 31(7): 989–1001. DOI: 10.1016/0020-7225(93)90107-6.
    [5] ORYNYAK I V, KRASOWSKY A J. The modelling of elastic response of a three-point bend specimen under impact loading [J]. Engineering Fracture Mechanics, 1998, 60(5−6): 563–575. DOI: 10.1016/S0013-7944(98)00034-4.
    [6] XING Y F, QIAO Y S, ZHU D C, et al. Elastic impact on finite Timoshenko beam [J]. Acta Mechanica Sinica, 2002, 18(3): 252–263. DOI: 10.1007/BF02487953.
    [7] KURT M, CHEN H, LEE Y S, et al. Nonlinear system identification of the dynamics of a vibro-impact beam: numerical results [J]. Archive of Applied Mechanics, 2012, 82(10−11): 1461–1479. DOI: 10.1007/s00419-012-0678-5.
    [8] IVANOV L D. Change of steel’s yield stress over ship’s service life and its effect on the first yield hull girder bending moment [J]. Transactions of the Royal Institution of Naval Architects Part A: International Journal of Maritime Engineering, 2013, 155(3): 153–159.
    [9] CHENG B, CAO X E, YE X H, et al. Stringer longitudinal bending-induced fatigue failure of stringer-to-floor beam welded connections in orthotropic steel railway bridge decks [J]. Journal of Bridge Engineering, 2019, 24(6): 04019055. DOI: 10.1061/(ASCE)BE.1943-5592.0001428.
    [10] JONES N. Structural impact [M]. 2nd ed. New York: Cambridge University Press, 2012: 86−102.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  577
  • HTML全文浏览量:  237
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-21
  • 修回日期:  2020-09-23
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回